Abstract:
The invention generally relates to analytical and monitoring systems useful for analyzing and measuring cells and biological samples. More particularly, the invention relates to systems and methods for imaging, measuring, counting, analyzing, and monitoring microscopic particles such as cells and biological molecules in solution samples.
Abstract:
The present disclosure provides for a system and method for assessing chronic exposure of a biological sample, such as a bodily fluid, to an analyte of interest. A biological sample may be illuminated to thereby generate a one or more pluralities of interacted photons. These interacted photons may be detected to thereby generate one or more spectroscopic data sets representative of a biological sample. Spectroscopic data sets generated may be compared to at least one reference data set. Each reference data set may be associated with a known exposure to a known analyte. The present disclosure contemplates that the system and method disclosed herein may be used to analyze exposure of biological samples to at least one analyte over time. Data sets may be obtained at various time intervals to assess changes in a molecular composition as a result of chronic exposure to an analyte.
Abstract:
A system for sub-surface fluorescence imaging is provided, the system comprising: an excitation source for selectably emitting light at at least one of at least two excitation wavelengths or wavelength ranges at a target surface; and a light detector for detecting fluorescence emission wavelengths or wavelength ranges from the target surface; wherein at least one of the at least two excitation wavelengths or wavelength ranges causes fluorescing of at least one marker at a sub-surface depth, the emitted light at each of the at least two excitation wavelengths or wavelength ranges having different depths of optical penetration and causing fluorescing at respective different depths. A method for sub-surface fluorescence imaging is also provided, in some cases exemplified by a reconstruction of the sub-surface fluorescence topography.
Abstract:
A system and method of high-speed microscopy using a two-photon microscope with spectral resolution. The microscope is operable to provide two- to five-dimensional fluorescence images of samples, including two or three spatial dimensions, a spectral dimension (for fluorescence emission), and a temporal dimension (on a scale of less than approximately one second). Two-dimensional (spatial) images with a complete wavelength spectrum are generated from a single scan of a sample. The microscope may include one of a multi-beam point scanning microscope, a single beam line scanning microscope, and a multi-beam line scanning microscope. The line scans may be formed using one or more of curved mirrors and lenses. The multiple beams may be formed using one of a grating, an array of lenses, and a beam splitter.
Abstract:
A microbial detection apparatus is provided. The apparatus includes a parabolic reflector. A light source is configured to direct a beam of light toward the focal point of the parabolic reflector. A fluid flow tube passes through the focal point of the parabolic reflector, such that the light beam path and the flow tube intersect at the focal point of the parabola. The fluid flow tube is configured to contain a flow of fluid. A first detector is included for detecting fluorescence light emitted from microbes within the fluid passing through the flow tube. A second detector is included for detecting Mie scattered light from particles within the fluid passing through the flow tube.
Abstract:
An illumination device (20) for a microscope (40) has a laser unit (24) that generates at least one broadband laser light pulse (30); light components (71, 72, 73, 74, 75, 76) of different wavelengths of said broadband laser light pulse (30) being offset in time from one another. A compensation unit (36) disposed in the path of the broadband laser light pulse (30) temporally offsets the light components (71, 72, 73, 74, 75, 76) of the broadband laser light pulse (30) in such a way that they exit the compensation unit (36) simultaneously or nearly simultaneously.
Abstract:
Multimodal optical spectroscopy systems and methods produce a spectroscopic event to obtain spectroscopic response data from biological tissue and compare the response data with an empirical equation configured to correlate the measured response data and the most probable attributes of the tissue, thus facilitating classification of the tissue based on those attributes for subsequent biopsy or remedial measures as necessary.
Abstract:
A method of obtaining, in a single exposure, imaging information from an object (16) representative of more than two distinct illumination images, the method comprising the steps of generating first electromagnetic waves (14) at least some of which having spatially modulated polarisation; illuminating the object with the first electromagnetic waves; and capturing second electromagnetic waves (18) emanating from the object.
Abstract:
A method and device is provided for characterizing microscopic elements. A source signal may be chopped by means of microsystems of opto-electromechanical elements (MOEMS), which gives rise to temporal modulation of the excitation signals. The method of characterizing microscopic elements involves propagating a dispersed light source signal, spatially chopping the spectrum of the source signal into at least two excitation signals having predetermined wavelengths λi, coding the excitation signals, focusing the excitation signals in order to generate a sensor signal propagated towards a measurement zone, and analyzing an interaction signal issuing from the interaction of the sensor signal with the microscopic elements situated in the measuring space. The spatial chopping of the spectrum of the source light signal is performed by a microsystem of opto-electromechanical elements (MOEMS).