Fe-Cr-Co magnetic alloy processing
    81.
    发明授权
    Fe-Cr-Co magnetic alloy processing 失效
    Fe-Cr-Co磁性合金加工

    公开(公告)号:US4174983A

    公开(公告)日:1979-11-20

    申请号:US924137

    申请日:1978-07-13

    CPC classification number: C21D6/002 H01F1/04

    Abstract: A method is disclosed for making a metallic body having desirable magnetic properties. The metallic body is made from an alloy which contains Fe, Cr, and Co and which may also contain one or several additional ferrite forming elements such as, e.g., Zr, Mo, V, Nb, Ta, Ti, Al, Si, or W. According to the disclosed method the alloy is cooled at a rate of at least 60 degrees C. per hour from an initial temperature at which the alloy is in an essentially single phase alpha state to a second temperature which is in a vicinity of 600 degrees C. Subsequently, the alloy is cooled at a second, slower rate to a third temperature which is in the vicinity of 525 degrees C.The disclosed method allows for a relatively broad range of initial temperatures, is relatively insensitive to compositional variations of the alloy, and permits simple reclamation of suboptimally treated parts. As a consequence, the method is particularly suited for large scale industrial production of permanent magnets as may be used, e.g., in relays, ringers, and electro-acoustic transducers.

    Abstract translation: 公开了一种用于制造具有期望磁性的金属体的方法。 金属体由含有Fe,Cr和Co的合金制成,并且还可以含有一种或几种额外的铁素体形成元素,例如Zr,Mo,V,Nb,Ta,Ti,Al,Si或 W.根据所公开的方法,合金以从合金基本上单相α状态的初始温度至低于600℃的第二温度以每小时至少60摄氏度的速率冷却 随后,将合金以第二较慢的速率冷却至525摄氏度附近的第三温度。所公开的方法允许相对宽的初始温度范围对于组成变化相对不敏感 合金,并允许对次优处理部件进行简单回收。 因此,该方法特别适用于可用于例如继电器,振铃器和电声换能器中的永久磁铁的大规模工业生产。

    NANOSTRUCTURED HIGH-STRENGTH PERMANENT MAGNETS
    83.
    发明申请
    NANOSTRUCTURED HIGH-STRENGTH PERMANENT MAGNETS 审中-公开
    纳米结构的高强度永磁体

    公开(公告)号:US20140132376A1

    公开(公告)日:2014-05-15

    申请号:US14118206

    申请日:2012-05-18

    Applicant: Sungho Jin

    Inventor: Sungho Jin

    Abstract: Materials, techniques, systems, and devices are disclosed for fabricating and implementing high-strength permanent magnets. In one aspect, a method of fabricating a magnet includes distributing particles of a first magnetic material such that the particles are substantially separated, in which the particles include a surface substantially free of oxygen. The method includes forming a coating of a second magnetic material over each of the particles, in which the coating forms an interface at the surface that facilitates magnetic exchange coupling between the first and second magnetic materials. The method includes consolidating the coated particles to produce a magnet that is magnetically stronger than each of the first and second magnetic materials.

    Abstract translation: 公开了用于制造和实施高强度永磁体的材料,技术,系统和装置。 在一个方面,一种制造磁体的方法包括分配第一磁性材料的颗粒,使得颗粒基本上分离,其中颗粒包括基本上不含氧的表面。 该方法包括在每个颗粒上形成第二磁性材料的涂层,其中涂层在表面上形成促进第一和第二磁性材料之间的磁交换耦合的界面。 该方法包括固化涂覆的颗粒以产生比第一和第二磁性材料中的每种磁性更强的磁体。

    Compositions comprising nanostructures for cell, tissue and artificial organ growth, and methods for making and using same
    84.
    发明授权
    Compositions comprising nanostructures for cell, tissue and artificial organ growth, and methods for making and using same 有权
    包含用于细胞,组织和人造器官生长的纳米结构的组合物,以及制备和使用它们的方法

    公开(公告)号:US08414908B2

    公开(公告)日:2013-04-09

    申请号:US11913062

    申请日:2006-04-28

    Abstract: The invention provides articles of manufacture comprising biocompatible nanostructures comprising nanotubes and nanopores for, e.g., organ, tissue and/or cell growth, e.g., for bone, kidney or liver growth, and uses thereof, e.g., for in vitro testing, in vivo implants, including their use in making and using artificial organs, and related therapeutics. The invention provides lock-in nanostructures comprising a plurality of nanopores or nanotubes, wherein the nanopore or nanotube entrance has a smaller diameter or size than the rest (the interior) of the nanopore or nanotube. The invention also provides dual structured biomaterial comprising micro- or macro-pores and nanopores. The invention provides biomaterials having a surface comprising a plurality of enlarged diameter nanopores and/or nanotubes.

    Abstract translation: 本发明提供包含生物相容性纳米结构的生物相容性纳米结构的制品,其包括用于例如器官,组织和/或细胞生长的纳米管和纳米孔,例如用于骨,肾或肝生长,及其用途,例如体外测试,体内植入 ,包括用于制造和使用人造器官以及相关疗法。 本发明提供了包含多个纳米孔或纳米管的锁定纳米结构,其中纳米孔或纳米管入口具有比纳米孔或纳米管的其余部分(内部)更小的直径或尺寸。 本发明还提供包含微孔或大孔和纳米孔的双结构生物材料。 本发明提供具有包括多个扩大直径的纳米孔和/或纳米管的表面的生物材料。

    PROBE SYSTEM COMPRISING AN ELECTRIC-FIELD-ALIGNED PROBE TIP AND METHOD FOR FABRICATING THE SAME
    86.
    发明申请
    PROBE SYSTEM COMPRISING AN ELECTRIC-FIELD-ALIGNED PROBE TIP AND METHOD FOR FABRICATING THE SAME 审中-公开
    包含电场对准探头提示的探测系统及其制造方法

    公开(公告)号:US20100229265A1

    公开(公告)日:2010-09-09

    申请号:US12767954

    申请日:2010-04-27

    CPC classification number: G01Q60/38 G01Q60/56 G01Q70/12 G11B9/1409 H01J9/025

    Abstract: A mechanically stable and oriented scanning probe tip comprising a carbon nanotube having a base with a gradually decreasing diameter, with a sharp tip at the probe tip. Such a tip or an array of tips is produced by depositing a catalyst metal film on a substrate, depositing a carbon dot on the catalyst metal film, etching away the catalyst metal film not masked by the carbon dot, removing the carbon dot from the catalyst metal film to expose the catalyst metal film and growing a carbon nanotube probe tip on the catalyst metal film. The carbon probe tips can be straight, angled, or sharply bent and have various technical applications.

    Abstract translation: 一种机械稳定和取向的扫描探针尖端,其包括具有逐渐减小的直径的基底的碳纳米管,在探针尖端具有尖锐的尖端。 通过在基板上沉积催化剂金属膜,在催化剂金属膜上沉积碳点,蚀刻未被碳点掩蔽的催化剂金属膜,从催化剂中除去碳点,从而制造这种尖端或尖端阵列 金属膜暴露催化剂金属膜并在催化剂金属膜上生长碳纳米管探针尖端。 碳探针尖端可以是直的,有角度的或急剧弯曲的,并具有各种技术应用。

    Tapered probe structures and fabrication
    87.
    发明申请
    Tapered probe structures and fabrication 有权
    锥形探头结构和制造

    公开(公告)号:US20090133171A1

    公开(公告)日:2009-05-21

    申请号:US11914108

    申请日:2006-05-10

    Applicant: Sungho Jin

    Inventor: Sungho Jin

    CPC classification number: G01Q70/12 Y10S977/875 Y10S977/878

    Abstract: Probe structures and fabrication techniques are described. The described probe structures can be used as probes for various applications such as conductance measurement probes, field emitter probes, nanofabrication probes, and magnetic bit writing or reading probes.

    Abstract translation: 描述了探头结构和制造技术。 所描述的探针结构可用作各种应用的探针,例如电导测量探针,场致发射探针,纳米制造探针和磁头写入或读取探针。

    Probe System Comprising an Electric-Field-Aligned Probe Tip and Method for Fabricating the Same
    89.
    发明申请
    Probe System Comprising an Electric-Field-Aligned Probe Tip and Method for Fabricating the Same 有权
    包括电场对准探头尖端的探头系统及其制造方法

    公开(公告)号:US20080272299A1

    公开(公告)日:2008-11-06

    申请号:US12088223

    申请日:2006-10-10

    Abstract: A mechanically stable and oriented scanning probe tip comprising a carbon nanotube having a base with gradually decreasing diameter, with a sharp tip at the probe tip. Such a tip or an array of tips is produced by depositing a catalyst metal film on a substrate (10 & 12 in FIG. 1(a)), depositing a carbon dot (14 in FIG. 1(b)) on the catalyst metal film, etching away the catalyst metal film (FIG. 1(c)) not masked by the carbon dot, removing the carbon dot from the catalyst metal film to expose the catalyst metal film (FIG. 1(d)), and growing a carbon nanotube probe tip on the catalyst film (16 in FIG. 1(e)). The carbon probe tips can be straight, angled, or sharply bent and have various technical applications.

    Abstract translation: 一种机械稳定和取向的扫描探针尖端,其包括具有逐渐减小的直径的基底的碳纳米管,在探针尖端具有尖锐的尖端。 通过在衬底(图10中的10和12)(图1(a))上沉积催化剂金属膜( a))沉积碳点(14 在催化剂金属膜上的图1( b)中,蚀刻掉催化剂金属膜(图1)( c ))未被碳点掩蔽,从催化剂金属膜除去碳点以暴露催化剂金属膜(图1( d)),并且生长碳纳米管 探针尖端在催化剂膜上(图1中的16)(图1)( e))。 碳探针尖端可以是直的,有角度的或急剧弯曲的,并具有各种技术应用。

Patent Agency Ranking