Abstract:
A semiconductor memory device with a laser programmable redundancy circuit, which includes: a plurality of decoders for selecting a row or column of the memory; at least one spare decoder which is selected instead of a decoder connected to a faulty memory cell; a link element inserted in series with the precharging transistor and connected between the power supply and the decoder output line; a signal generator which generates a non-selection signal for making the object decoder unselected only when a spare decoder is selected, the signal generator being provided in the spare decoder; and a transistor, having a gate to which the non-selection signal is input, with the drain and the source thereof being connected to the decoder output and ground, respectively, the transistor being provided in the decoder.
Abstract:
An MOS dynamic memory device is improved in operation by adding a cell plate voltage control circuit to terminals of the word lines and connected to respective cell plates. In operation, the cell plate is recharged after discharged during with a time which a word line remains driven.
Abstract:
Disclosed is a semiconductor memory device which is operable in a selected one of page mode and nibble mode, depending upon the length of time in which an external column address strobe signal stays at a specific level. The semiconductor memory device comprises a circuit for discriminating the length of time where the external column address strobe signal is at a specific level with a predetermined period of time. Data is outputted in page mode in response to one of results of such discrimination and in nibble mode in response to the other result of the discrimination. The discriminating circuit may comprise a second internal column address strobe signal generator and a delay circuit. The second internal column address strobe signal generator includes a NAND circuit at its first stage, and the delay circuit is designed to have different delay times at the building-up and downward edges of an input signal applied thereto. The output of the discriminator is used to operate and reset an output circuit whereby one of the output modes is selected.
Abstract:
Drains of first and second transistors are connected to a low level line of an internal circuitry such as a sense amplifier related to determination of a potential in a memory cell. The first transistor has its gate diode-connected to a sense drive line and its source grounded. The second transistor receives at its gate an internally generated signal, and its source is grounded. In the standby state, the potential of the sense drive line is set higher than low level of said word lines by the threshold voltage Vthn of the first transistor and used as dummy GND potential Vss′, and in the active state, the second transistor is rendered conductive so as to prevent floating of the sense drive line from the dummy GND potential Vss′.
Abstract:
A semiconductor memory device comprises a DRAM memory cell array comprising a plurality of dynamic type memory cells arranged in a plurality of rows and columns, and an SRAM memory cell array comprising static type memory cells arranged in a plurality of rows and columns. The DRAM memory cell array is divided into a plurality of blocks each comprising a plurality of columns. The SRAM memory cell array is divided into a plurality of blocks each comprising a plurality of columns, corresponding to the plurality of blocks in the DRAM memory cell array. The SRAM memory cell array is used as a cache memory. At the time of cache hit, data is accessed to the SRAM memory cell array. At the time of cache miss, data is accessed to the DRAM memory cell array. On this occasion, data corresponding to one row in each of the blocks in the DRAM memory cell array is transferred to one row in the corresponding block in the SRAM memory cell array.
Abstract:
A semiconductor memory device comprises two memory cell arrays (1a, 1b) in which a block divisional operation is performed. Two spare rows (2a, 2b) are provided corresponding to the two memory cell arrays (1a, 1b). Spare row decoders (5a, 5b) are provided for selecting the spare rows (2a, 2b), respectively. One spare row decoder selecting signal generation circuit (18) used in common by the spare row decoders (5a, 5b) is provided. The spare row decoder selecting signal generation circuit (18) can be previously set so as to generate a spare row decoder selecting signal (SRE) when a defective row exists in either of the memory cell arrays (1a, 1b) and the defective row is selected by row decoder groups (4a, 4b). Each of the spare row decoders (5a, 5b) is activated in response to the spare row decoder selecting signal (SRE) and a block control signal.
Abstract:
Column address A0-A11 is once predecoded by a first predecoder PD1, a second predecoder PD2, and a CDE buffer CDB and then applied to a column decoder CD. Column decoder CD selectively drives one of a plurality of column selecting lines CSL on the basis of the applied predecoded signals. This causes corresponding bit lines in respective memory cell arrays MCA1-MCA4 to be simultaneously selected. Column decoder CD includes a plurality of column drivers corresponding to the plurality of column selecting lines, and the column drivers are divided into a plurality of groups. The predecoded signals applied from second predecoder PD2 and CDE buffer CDB to column decoder CD are generated independently for respective groups, and signal lines for them are also distributed to respective groups. This causes the length of wiring of each predecoded signal line to be shortened.
Abstract:
A semiconductor memory device comprises two memory cell arrays (1a, 1b) in which a block divisional operation is performed. Two spare rows (2a, 2b) are provided corresponding to the two memory cell arrays (1a, 1b). Spare row decoders (5a, 5b) are provided for selecting the spare rows (2a, 2b), respectively. One spare row decoder selecting signal generation circuit (18) used in common by the spare row decoders (5a, 5b) is provided. The spare row decoder selecting signal generation circuit (18) can be previously set so as to generate a spare row decoder selecting signal (SRE) when a defective row exists in either of the memory cell arrays (1a, 1b) and the defective row is selected by row decoder groups (4a, 4b). Each of the spare row decoders (5a, 5b) is activated in response to the spare row decoder selecting signal (SRE) and a block control signal.
Abstract:
In a dynamic RAM of a CSL system, a memory array is divided into a plurality of memory array portions, and bit line pairs provided in the respective memory array portions are connected to their corresponding I/O line pairs simultaneously in response to a CSL output. In such an RAM, only the I/O line pair of a memory array portion to be accessed is precharged to the level of V.sub.CC -V.sub.th, while the I/O line pair of a memory array portion not to be accessed is precharged to the level of 1/2.multidot.V.sub.CC which is the same level as the bit line pairs. This makes it possible to achieve a faster data reading operation and also prevent unnecessary currents from flowing between the bit line pairs and the I/O line pair in the unaccessed memory array portion.
Abstract:
The semiconductor memory device contains a voltage converting circuit. The voltage converting circuit includes a plurality of reference voltage generating circuits for respectively generating a plurality of reference voltages at different levels. The voltage converting circuit further includes a differential amplifier, an output circuit, a switching circuit and a switching control circuit. The switching control circuit and the switching circuit select one of the plurality of reference voltages and supply the selected reference voltage to the differential amplifier in response to an externally applied control signal. The differential amplifier and the output circuit apply the supplied reference voltage to an internal circuit.