FLUID FLOW CELL INCLUDING A SPHERICAL LENS
    63.
    发明申请

    公开(公告)号:US20180246031A1

    公开(公告)日:2018-08-30

    申请号:US15908628

    申请日:2018-02-28

    申请人: MarqMetrix Inc.

    IPC分类号: G01N21/01 G01N21/65

    摘要: A flow cell device including a spherical optical element is disclosed. The spherical lens can be sealed to the body of the flow cell device in a manner that provides external optical access to a fluid in an analysis region of a flow path through the flow cell device. The seal can be provided by an elastomer, a polymer, or a deformable metal. The disposition of the spherical lens to the flow path enables in situ optical analysis of the fluid. An optical analysis device can be removably connected to the flow cell device to provide the optical analysis. In some embodiments the optical analysis device is a portable Raman spectrometer. The flow cell device can provide a supplementary interrogation interface, and/or an on board sensor device(s) to enable multivariate analysis and/or advanced triggering.

    Light Delivery and Collection Device for Measuring Raman Scattering of a Sample

    公开(公告)号:US20180136132A1

    公开(公告)日:2018-05-17

    申请号:US15378156

    申请日:2016-12-14

    IPC分类号: G01N21/65 G01J3/02

    摘要: This invention relates to a light delivery and collection device for measuring Raman scattering from a large area of a sample. The light delivery and collection device comprises a reflective cavity made of a material or having a surface coating with high reflectivity to the excitation light and the Raman scattered light. The reflective cavity has two apertures. The first aperture is configured to receive the excitation light which then projects onto the second aperture. The second aperture is configured to be applied close to the sample such that the reflective cavity substantially forms an enclosure covering a large area of the sample. The excitation light produces Raman scattered light from the covered area of the sample. The reflective cavity reflects any excitation light and Raman light scattered from the sample unless the excitation light and the Raman scattered light either emit from the first aperture to be measured with a spectrometer device, or are re-scattered by the sample at the second aperture. The multi-reflection of the reflective cavity greatly improves the excitation efficiency of Raman scattering from the sample and in the meantime enhances its collection efficiency. In addition, it also causes more excitation light to penetrate into a diffusely scattering sample and allows efficient collection of the Raman scattered light generated thereof, hence enabling sub-surface Raman scattering measurement.

    METHODS AND DEVICES FOR MEASURING RAMAN SCATTERING OF A SAMPLE

    公开(公告)号:US20180136131A1

    公开(公告)日:2018-05-17

    申请号:US15349510

    申请日:2016-11-11

    IPC分类号: G01N21/65

    摘要: This invention relates to a light delivery and collection device for measuring Raman scattering from a large area of a sample. The light delivery and collection device comprises a reflective cavity made of a material or having a surface coating with high reflectivity to the excitation light and the Raman scattered light. The reflective cavity has two apertures. The first aperture is configured to receive the excitation light which then projects onto the second aperture. The second aperture is configured to be applied close to the sample such that the reflective cavity substantially forms an enclosure covering a large area of the sample. The excitation light produces Raman scattered light from the covered area of the sample. The reflective cavity reflects any excitation light and Raman light scattered from the sample unless the excitation light and the Raman scattered light either emit from the first aperture to be measured with a spectrometer device, or are re-scattered by the sample at the second aperture. The multi-reflection of the reflective cavity greatly improves the excitation efficiency of Raman scattering from the sample and in the meantime enhances its collection efficiency. In addition, it also causes more excitation light to penetrate into a diffusely scattering sample and allows efficient collection of the Raman scattered light generated thereof, hence enabling sub-surface Raman scattering measurement.