摘要:
A method for providing a urinary tract tissue graft composition includes providing a segment of small intestinal submucosa and positioning the segment of small intestinal submucosa in a tissue culture frame such that the segment of small intestinal submucosa is suspended and held in a taut position by the tissue culture frame. At least one multipotent cell type is isolated from a tissue specimen of a subject and cultured, and then seeded upon a surface of the segment of small intestinal submucosa, thereby forming a urinary tract tissue graft. Methods for repairing a damaged urinary tract tissue of a subject are also disclosed.
摘要:
The present invention relates to methods of inducing differentiation of mammalian bone marrow stromal cells into neuronal cells by contacting marrow stromal cells with a neuronal differentiation-inducing compounds. Neuronal differentiation-inducing compounds of the invention include anti-oxidants such as, but not limited to, beta-mercaptoethanol, dimethylsulfoxide, butylated hydroxyanisole, butylated hydroxytoluene, ascorbic acid, dimethylfumarate, and n-acetylcysteine. Once induced to differentiate into neuronal cells, the cells can be used for cell therapy, gene therapy, or both, for treatment of diseases, disorders, or conditions of the central nervous system.
摘要:
This invention provides cells and methods for stimulating proliferation and migration of endogenous and exogenous mammalian stem cells in vivo and in vitro. The invention provides reagents and methods for efficiently proliferating mammalian stem cells in an animal in need thereof and producing stem cells that can be re-introduced into an animal in need thereof to alleviate neurological and corporal disorders.
摘要:
This invention provides methods of forming new blood vessels in diseased or damaged tissue in a subject, methods of increasing blood flow to diseased or damaged tissue in a subject, and methods of increasing angiogenesis in diseased tissue in a subject, which methods comprise: a) isolating autologous bone marrow-mononuclear cells from the subject; and b) transplanting locally into the diseased or damaged tissue an effective amount of the autologous bone-marrow mononuclear cells, thereby forming new blood vessels in the diseased or damaged tissue. The new blood vessels may be capillaries or collateral vessels in ischemic tissue or any site of angiogenesis. Also provided are methods of treating tissue in disease or injury by local transplantation with an effective amount of the autologous bone marrow-mononuclear cells so as to induce vascularization in such diseased tissue.
摘要:
The present disclosure relates generally to an osteo-tissue graft capable of promoting bone tissue growth and regeneration, comprising at least one self-assemble peptide and mesenchymal stem cells (MSCs) in accordance with the present invention and a method of preparing such an osteo-tissue graft. The grafts are suitable for treatment of bone disorder or damages through tissue engineering, cellular replacement therapies as well as other applications.
摘要:
Disclosed is the use of a water-soluble realgar solid dispersion in the preparation of an erythroid differentiation inducer for bone marrow hematopoietic stem cells and/or bone marrow hematopoietic progenitor cells. The water-soluble realgar solid dispersion is prepared from raw materials comprising 1 part by weight of realgar, 1-20 parts by weight of a polymer, and 0-5 parts by weight of a surfactant. The water-soluble realgar solid dispersion can induce bone marrow hematopoietic stem and/or progenitor cells to be differentiated into red blood cells, promote the accumulation of red blood cells in bone marrow cells, effectively alleviate the decrease in the number of red blood cells caused by the suppression of the erythroid differentiation of bone marrow hematopoietic stem and/or progenitor cells, improve anemia caused by hematopoietic failure, and protect bone marrow cells from the killing effect.
摘要:
The present invention provides for novel methods for regulating and detecting the cytosine methylation status of DNA. The invention is based upon identification of a novel and surprising catalytic activity for the family of TET proteins, namely TET1, TET2, TET3, and CXXC4. The novel activity is related to the enzymes being capable of converting the cytosine nucleotide 5-methylcytosine into 5-hydroxymethylcytosine by hydroxylation.
摘要:
Due to the size and complexity of tissues such as the spinal cord and articular cartilage, specialized constructs incorporating cells as well as smart materials may be a promising strategy for achieving functional recovery. Aspects of the present invention describe the use of an electroactive, or piezoelectric, material that will act as a scaffold for stem cell induced tissue repair. Embodiments of the inventive material can also act alone as an electroactive scaffold for repairing tissues. The piezoelectric material of the present invention acts as a highly sensitive mechanoelectrical transducer that will generate charges in response to minute vibrational forces.
摘要:
Cocktails of chemical inducers of neuron-like properties (CINP) is provided, which includes cAMP agonists, neurogenic small molecules, glycogen synthase kinase inhibitors, TGFβ receptor inhibitors, and BET family bromodomain inhibitors and optionally, a selective inhibitor of ROCK or p38 MAPK. These cocktails are used in a method of inducing neuron-like properties in partially or completely differentiated non-neuronal cells. The method includes contacting cells of a first type (non-neuronal) with the CINPs for a sufficient period of time to result in reprogramming the cell into cells of a second type having neuron-like characteristics (CiNs). Isolated chemically induced neurons (CiNs) can be used in a number of applications, including but not limited to cell therapy.
摘要:
Substantially homogenous cells populations which co-express CD49c, CD90 and telomerase are made. In one embodiment, humans suffering from a degenerative, traumatic, acute injury, cardiac or neurological condition are treated with the substantially homogenous cells populations which co-express CD49c, CD90 and telomerase. In another embodiment, committed progenitor cells are made are made by selecting from a cultured source of a cell population which co-express CD49c and CD90 and modifying the cell population. The committed progenitor cells can be employed to treat a human suffering from a degenerative, traumatic, acute injury, cardiac or neurological condition and formulate pharmaceutical compositions.