摘要:
Embodiments of mechanisms for forming a micro-electro mechanical system (MEMS) device are provided. The MEMS device includes a CMOS substrate and a MEMS substrate bonded with the CMOS substrate. The CMOS substrate includes a semiconductor substrate, a first dielectric layer formed over the semiconductor substrate, and a plurality of conductive pads formed in the first dielectric layer. The MEMS substrate includes a semiconductor layer having a movable element and a second dielectric layer formed between the semiconductor layer and the CMOS substrate. The MEMS substrate also includes a closed chamber surrounding the movable element. The MEMS substrate further includes a blocking layer formed between the closed chamber and the first dielectric layer of the CMOS substrate. The blocking layer is configured to block gas, coming from the first dielectric layer, from entering the closed chamber.
摘要:
The present disclosure relates an integrated chip having one or more MEMS devices. In some embodiments, the integrated chip has a carrier substrate with one or more cavities disposed within a first side of the carrier substrate. A dielectric layer is disposed between the first side of the carrier substrate and a first side of a micro-electromechanical system (MEMS) substrate. The dielectric layer has sidewalls that are laterally set back from sidewalls of openings extending through the MEMs substrate to the one or more cavities. A bonding structure, including an intermetallic compound having a plurality of metallic elements, abuts a second side of the MEMS substrate and is electrically connected to a metal interconnect layer within a dielectric structure disposed over a CMOS substrate.
摘要:
The present disclosure relates to an integrated chip having an integrated bio-sensor with horizontal and vertical sensing surfaces. In some embodiments, the integrated chip has a sensing device disposed within a substrate, and a lower metal wire over the substrate and electrically coupled to the sensing device. First and second metal vias are arranged on the lower metal wire at locations set back from sidewalls of the lower metal wire, and first and second upper metal wires respectively cover top surfaces of the first and second metal vias. A dielectric structure surrounds the lower metal wire, the first and second metal vias, and the first and second upper metal wires. A sensing well has sensing surfaces that extend along an upper surface of the lower metal wire and along sidewalls of the first and second metal vias and the first and second upper metal wires.
摘要:
The present disclosure relates to a structure and method of forming a MEMS-CMOS integrated circuit with an outgassing barrier and a stable electrical signal path. An additional poly or metal layer is embedded within the MEMS die to prevent outgassing from the CMOS die. Patterned conductors formed by a damascene process and a direct bonding between the two dies provide a stable electrical signal path.
摘要:
Some embodiments relate to a manufacturing process that combines a MEMS capacitor of a microelectromechanical systems (MEMS) microphone and an integrated circuit (IC) onto a single substrate. A dielectric is formed over a device substrate. A conductive diaphragm and a conductive backplate are formed within the dielectric, with a sacrificial portion of the dielectric between them. A first recess is formed, which extends through the dielectric to an upper surface of the conductive diaphragm. A second recess is formed, which extends through the substrate and dielectric to a lower surface of the conductive backplate. The sacrificial layer is removed to create an air gap between the conductive diaphragm and the conductive backplate. The air gap joins the first and second recesses to form a cavity that extends continuously through the dielectric and the substrate. The present disclosure is also directed to the semiconductor structure of the MEMS microphone resulting from the manufacturing process.
摘要:
A gas sensor includes a substrate, a heater, a dielectric layer, a sensing electrode, and a gas sensitive film. The substrate has a sensing region and a peripheral region surrounding the sensing region, and the substrate further has an opening disposed in the sensing region. The heater is disposed at least above the opening, and the heater has an electrical resistivity larger than about 6×10−8 ohm-m. The dielectric layer is disposed on the heater. The sensing electrode is disposed on the dielectric layer. The gas sensitive film is disposed on the sensing electrode.
摘要:
The present disclosure relates to a microelectromechanical systems (MEMS) package having two MEMS devices with different pressures, and an associated method of formation. In some embodiments, the (MEMS) package includes a device substrate and a cap substrate bonded together. The bonded substrate comprises a first cavity corresponding to a first MEMS device having a first pressure and a second cavity corresponding to a second MEMS device having a different second pressure. The second cavity comprises a major volume and a vent hole connected by a lateral channel disposed between the device substrate and the cap substrate and the vent hole is hermetically sealed by a sealing structure.
摘要:
The present disclosure is directed to an apparatus and method for manufacture thereof. The apparatus includes a first passive substrate bonded to a second active substrate by a conductive metal interface. The conductive metal interface allows for integration of different function devices at a wafer level.
摘要:
A method for forming an integrated semiconductor device includes providing a first wafer, providing a second wafer, and bonding the first wafer over the second wafer. The first wafer includes a first substrate having a microelectromechanical system (MEMS) device layer. The second wafer includes a second substrate having at least one active device, and at least one interconnect layer over the second substrate. The MEMS device layer is connected with the at least one interconnect layer. The method further includes forming at least one conductive plug through the first substrate and the MEMS device layer and inside the at least one interconnect layer, etching the second substrate and the at least one interconnect layer to form a cavity extending from a surface of the second substrate to the MEMS device layer, and etching the first substrate and the MEMS device layer to form a MEMS device interfacing with the cavity.
摘要:
A sensor is made up of two substrates which are adhered together. A first substrate includes a pressure-sensitive micro-electrical-mechanical (MEMS) structure and a conductive contact structure that protrudes outwardly beyond a first face of the first substrate. A second substrate includes a complementary metal oxide semiconductor (CMOS) device and a receiving structure made up of sidewalls that meet a conductive surface which is recessed from a first face of the second substrate. A conductive bonding material physically adheres the conductive contact structure to the conductive surface and electrically couples the MEMS structure to the CMOS device.