Abstract:
A system and method for a semiconductor molding chamber is disclosed. An embodiment comprises a top molding portion and a bottom molding portion that form a cavity between them into which a semiconductor wafer is placed. The semiconductor molding chamber has a first set of vacuum tubes which hold and fix the position of the semiconductor wafer and a second set of vacuum tubes which evacuate the cavity of extraneous ambient gasses. The encapsulant may then be placed over the semiconductor wafer in order to encapsulate the semiconductor wafer.
Abstract:
An apparatus including a bond head, a supplemental support, a reduction module, and a transducer is provided. The bond head holds a first substrate that contains a first set of metal pads. The supplemental support holds a second substrate that contains a second set of metal pads. The aligner forms an aligned set of metal pads by aligning the first substrate to the second substrate. The reduction module contains the aligned substrates and a reduction gas flows into the reduction module. The transducer provides repeated relative motion to the aligned set of metal pads.
Abstract:
A light-emitting diode (LED) device is provided. The LED device has a substrate, a reflective structure over the substrate, and an LED structure over the reflective structure. The reflective structure is formed of non-metallic materials. In one embodiment, the reflective structure is formed of alternating layers of different non-metallic materials having different refractive indices. In another embodiment, the reflective structure is formed of alternating layers of high-porosity silicon and low-porosity silicon. In yet another embodiment, the reflective structure is formed of silicon dioxide, which may allow the use of fewer layers. The reflective structure may be formed directly on the same substrate as the LED structure or formed on a separate substrate and then bonded to the LED structure.
Abstract:
A method of forming a light-emitting diode (LED) device and separating the LED device from a growth substrate is provided. The LED device is formed by forming an LED structure over a growth substrate. The method includes forming and patterning a mask layer on the growth substrate. A first contact layer is formed over the patterned mask layer with an air bridge between the first contact layer and the patterned mask layer. The first contact layer may be a contact layer of the LED structure. After the formation of the LED structure, the growth substrate is detached from the LED structure along the air bridge.
Abstract:
A system and a method for protecting through-silicon vias (TSVs) is disclosed. An embodiment comprises forming an opening in a substrate. A liner is formed in the opening and a barrier layer comprising carbon or fluorine is formed along the sidewalls and bottom of the opening. A seed layer is formed over the barrier layer, and the TSV opening is filled with a conductive filler. Another embodiment includes a barrier layer formed using atomic layer deposition.
Abstract:
A method includes providing an interposer wafer including a substrate, and a plurality of through-substrate vias (TSVs) extending from a front surface of the substrate into the substrate. A plurality of dies is bonded onto a front surface of the interposer wafer. After the step of bonding the plurality of dies, a grinding is performed on a backside of the substrate to expose the plurality of TSVs. A plurality of metal bumps is formed on a backside of the interposer wafer and electrically coupled to the plurality of TSVs.
Abstract:
An integrated circuit structure includes a semiconductor substrate; a through-semiconductor via (TSV) opening extending into the semiconductor substrate; and a TSV liner in the TSV opening. The TSV liner includes a sidewall portion on a sidewall of the TSV opening and a bottom portion at a bottom of the TSV opening. The bottom portion of the TSV liner has a bottom height greater than a middle thickness of the sidewall portion of the TSV liner.
Abstract:
An apparatus includes a robot arm, and a plurality of guide pins mounted on the robot arm. Each of the plurality of guide pins includes a plurality of wafer supports at different levels, with each of the plurality of wafer supports configured to support and center a wafer having a size different from wafers configured to be supported and centered by remaining ones of the plurality of wafer supports
Abstract:
A composite carrier structure for manufacturing semiconductor devices is provided. The composite carrier structure utilizes multiple carrier substrates, e.g., glass or silicon substrates, coupled together by interposed adhesive layers. The composite carrier structure may be attached to a wafer or a die for, e.g., backside processing, such as thinning processes. In an embodiment, the composite carrier structure comprises a first carrier substrate having through-substrate vias formed therethrough. The first substrate is attached to a second substrate using an adhesive such that the adhesive may extend into the through-substrate vias.
Abstract:
A system and method for determining underfill expansion is provided. An embodiment comprises forming cover marks along a top surface of a substrate, attaching a semiconductor substrate to the top surface of the substrate, placing an underfill material between the semiconductor substrate and the substrate, and then using the cover marks to determine the expansion of the underfill over the top surface of the substrate. Additionally, cover marks may also be formed along a top surface of the semiconductor substrate, and the cover marks on both the substrate and the semiconductor substrate may be used together as alignment marks during the alignment of the substrate and the semiconductor substrate.