Abstract:
A system and method are provided for implementing improved frequency estimation for wireless communication that involves lower power transmissions with reduced signal-to-noise ratios for receivers particularly in systems configured according to the pending IEEE 802.11ah standard. These systems and methods provide frequency estimation over that prescribed for devices operating according other IEEE 802.11 standards and the proposed frequency estimator specified for IEEE 802.11ac systems. The disclosed techniques use schemes that reuse a short training field (STF) stored in memory, employ joint STF-long training field (LTF) estimation, use portions of a guard interval (GI), and create of multiple-phase estimates, with different symbol separation to improve a signal-to-noise ratio of the frequency estimate.
Abstract:
Provided is a method of correcting a time misalignment between envelope and phase components in a transmitting apparatus which separates envelope and phase components of a signal, processes them, and then recombines them to transmit the recombined signal. For this, in a method of correcting a time misalignment between envelope and phase components according to an embodiment of the present invention, a time misalignment is corrected by applying a time delay to at least one of envelope and phase components in digital and analog signal processing operations, or applying a time delay to an envelope or phase component by a pre-processing operation.
Abstract:
An implantable microstimulator configured for implantation beneath a patient's skin for tissue stimulation to prevent and/or treat various disorders, uses a self-contained power source. Periodic or occasional replenishment of the power source is accomplished, for example, by inductive coupling with an external device. A bidirectional telemetry link allows the microstimulator to provide information regarding the system's status, including the power source's charge level, and stimulation parameter states. Processing circuitry automatically controls the applied stimulation pulses to match a set of programmed stimulation parameters established for a particular patient. The microstimulator preferably has a cylindrical hermetically sealed case having a length no greater than about 27 mm and a diameter no greater than about 3.3 mm. A reference electrode is located on one end of the case and an active electrode is located on the other end. The case is externally coated on selected areas with conductive and non-conductive materials.
Abstract:
According to one embodiment, a method of processing a digital broadcasting signal in a transmitter includes: performing RS (Reed-Solomon) encoding on signaling data containing cross layer information between a physical layer and a upper layer; interleaving the RS encoded signaling data, wherein interleaving the RS encoded signaling data includes writing the RS encoded signaling data row-by-row from left-to-right and top-to-bottom in a signaling data block, and outputting the signaling data in the signaling data block by reading column-by-column from top-to-bottom and left-to-right; and transmitting the digital broadcasting signal including the mobile service data and the interleaved signaling data during slots.
Abstract:
A communication system utilizing adaptive envelope tracking includes a transmit path, a feedback receiver, a parameter component and an envelope tracking component. The transmit path is configured to generate a transmit signal. The feedback receiver is configured to generate a feedback signal from the transmit signal. The parameter component is configured to generate linearity parameters from the feedback signal and the baseband signal. The envelope tracking component is configured to generate a supply control signal having time delay adjustments.
Abstract:
A video data transmitter apparatus generates and transmits a multi-value amplitude modulation signal by performing a multi-value amplitude modulation of a plurality of N bits per one symbol according to video data of a video signal or a color signal constituting the video signal, or a brightness signal and a color-difference signal. A data separator portion separates the video data into first to N-th pixel data, a difference calculator portion calculates (N−1) pieces of predetermined difference information based on the separated first to N-th pixel data, and a multi-value amplitude modulator portion performs a multi-value modulation so that predetermined N-bit data corresponds to a multi-value signal level closest to an intermediate level having an intermediate value between a maximum level and a minimum level of the multi-value signal level of the multi-value amplitude modulation signal.
Abstract:
A method of mapping a plurality of different bit sequences to a plurality of different signal points in a constellation, the number of bit sequences being greater than the number of signal points. The method includes, for a device in a telecommunication network, the acts of: determining, for each signal point in the constellation, a number of bit sequences to be mapped to each signal point, the numbers of bit sequences being distributed according to a discrete Gaussian distribution among the constellation, selecting in the plurality of bit sequences, for each signal point in the constellation, a set including the determined number of bit sequences (u) that minimize the maximal Hamming distance among the selected sets.
Abstract:
The present invention provides a method and an apparatus for the transmission of control signal in a radio communication system. The method includes the steps of processing first control information on the basis of a first resource index to create a first control signal, processing second control information on the basis of a second resource index to create a second control signal, and transmitting the first control signal and the second control signal.
Abstract:
A receiver may process a received signal to generate a processed received signal. The receiver may generate, during a sequence estimation process, an estimate of a phase error of the processed received signal. The receiver may generate an estimate of a value of a transmitted symbol corresponding to the received signal based on the estimated phase error. The generation of the estimate of the phase error may comprise generation of one or more phase candidate vectors. The generation of the estimate may comprise calculation of a metric based on the one or more phase candidate vectors. The calculation of the metric may comprise phase shifting the processed received signal based on the estimated phase error resulting in a phase-corrected received signal. The calculation of the metric may comprise calculating a Euclidean distance based on the phase-corrected received signal and one or more symbol candidate vectors.
Abstract:
The present invention is directed to data communication system and methods. More specifically, various embodiments of the present invention provide a communication interface that is configured to transfer data at high bandwidth using nDSQ format(s) over optical communication networks. In certain embodiments, the communication interface is used by various devices, such as spine switches and leaf switches, within a spine-leaf network architecture, which allows large amount of data to be shared among servers.