Abstract:
A chip pad structure of an integrated circuit (IC) and the method of forming are disclosed. The chip pad comprises a main pad portion and a ring pad portion. During a charging process involved in forming the chip pad structure, electrical connections from the gate electrodes of MOS transistors in the IC substrate generally are made only to the ring pad portion that has an antenna-to-gate area ratio substantially below a predetermined antenna design rule ratio, and thus is resistant or immune to antenna effect. The main pad portion and the ring pad portion are coupled together through metal bridges formed in an upper interconnect metal layer or in the top conductive pad layer. The chip pad may be used as probe pads on a parametric testline or bonding pads on an IC.
Abstract:
A semiconductor wafer has a plurality of semiconductor die. A peripheral region is formed around the die. An insulating material is formed in the peripheral region. A portion of the insulating material is removed to form a through hole via (THV). A conductive material is deposited in the THV to form a conductive THV. A conductive layer is formed between the conductive THV and contact pads of the semiconductor die. A noise absorbing material is deposited in the peripheral region between the conductive THV to isolate the semiconductor die from intra-device interference. The noise absorbing material extends through the peripheral region from a first side of the semiconductor die to a second side of the semiconductor die. The noise absorbing material has an angular, semi-circular, or rectangular shape. The noise absorbing material can be dispersed in the peripheral region between the conductive THV.
Abstract:
A chip pad structure of an integrated circuit (IC) and the method of forming are disclosed. The chip pad comprises a main pad portion and a ring pad portion. During a charging process involved in forming the chip pad structure, electrical connections from the gate electrodes of MOS transistors in the IC substrate generally are made only to the ring pad portion that has an antenna-to-gate area ratio substantially below a predetermined antenna design rule ratio, and thus is resistant or immune to antenna effect. The main pad portion and the ring pad portion are coupled together through metal bridges formed in an upper interconnect metal layer or in the top conductive pad layer. The chip pad may be used as probe pads on a parametric testline or bonding pads on an IC.
Abstract:
A semiconductor wafer has a plurality of semiconductor die. A peripheral region is formed around the die. An insulating material is formed in the peripheral region. A portion of the insulating material is removed to form a through hole via (THV). A conductive material is deposited in the THV to form a conductive THV. A conductive layer is formed between the conductive THV and contact pads of the semiconductor die. A noise absorbing material is deposited in the peripheral region between the conductive THV to isolate the semiconductor die from intra-device interference. The noise absorbing material extends through the peripheral region from a first side of the semiconductor die to a second side of the semiconductor die. The noise absorbing material has an angular, semi-circular, or rectangular shape. The noise absorbing material can be dispersed in the peripheral region between the conductive THV.
Abstract:
The invention broadly and generally provides a connection structure for connecting a microelectronic device to a substrate, the aforesaid connection structure comprising: (a) a metal layer electrically connected to the aforesaid microelectronic device; (b) an interface element attached to an interface portion of the aforesaid metal layer; (c) a metallic solder element attached to the aforesaid interface element at an interface region of the aforesaid metallic solder element; and (d) a current dispersing structure operable to spatially disperse an electric current, the aforesaid current dispersing structure comprising an electrically insulating material and being disposed within at least one of the aforesaid interface portion, the aforesaid interface element, and the aforesaid interface region.
Abstract:
The invention broadly and generally provides a connection structure for connecting a microelectronic device to a substrate, the aforesaid connection structure comprising: (a) a metal layer electrically connected to the aforesaid microelectronic device; (b) an interface element attached to an interface portion of the aforesaid metal layer; (c) a metallic solder element attached to the aforesaid interface element at an interface region of the aforesaid metallic solder element; and (d) a current dispersing structure operable to spatially disperse an electric current, the aforesaid current dispersing structure comprising an electrically insulating material and being disposed within at least one of the aforesaid interface portion, the aforesaid interface element, and the aforesaid interface region.
Abstract:
A low-capacitance bonding pad for a semiconductor device. A diffusion region is formed in a substrate, and a bonding pad is formed on the substrate and aligned with the diffusion region. The bonding pad is made from a stacked metal layer and a metal layer. The stacked metal layer is made from a plurality of metal layers and a plurality of dielectric layers, and the metal layers and the dielectric layers are stacked alternately. The metal layers stacked in the stacked metal layer are formed with small areas. Each of the metal layers stacked in the stacked metal layer is coupled with the adjacent metal layer by via plugs.
Abstract:
A low-capacitance bonding pad for a semiconductor device. A diffusion region is formed in a substrate, and a bonding pad is formed on the substrate and aligned with the diffusion region. The bonding pad is made from a stacked metal layer and a metal layer. The stacked metal layer is made from a plurality of metal layers and a plurality of dielectric layers, and the metal layers and the dielectric layers are stacked alternately. The metal layers stacked in the stacked metal layer are formed with small areas. Each of the metal layers stacked in the stacked metal layer is coupled with the adjacent metal layer by via plugs.
Abstract:
Removable extension areas electrically connected to the original die bond pad allow for testing connections to be made. After removal of the extension areas, the circuitry below the region of the extension areas can be seen through a microscope. The use of perforations and/or underlayer sections can aid in the removal of the extension areas. Underlayer sections may comprise a metal that forms an intermetallic interaction with the metal layer of the extension areas.