摘要:
Various embodiments produce a semiconductor device, such a MEMS device, having metallized structures formed by replacing a semiconductor structure with a metal structure. Some embodiments expose a semiconductor structure to one or more a reacting gasses, such as gasses including tungsten or molybdenum.
摘要:
An electromechanical device comprises a substrate structure, a set of electrodes, one or more anchor trenches, and one or more multi-faced components. For example, each of the one or more multi-faced components comprises an isolation region formed on a first portion of the surface of the component, a high resistance region formed on a second portion of the surface of the component, and a low resistance region formed on a third portion of the surface of the component. For example, the synapse device is configured to provide an analog resistive output, ranging between the high resistance region and the low resistance region, from at least one of the set of electrodes in response to a pulsed voltage input to at least another one of the set of electrodes.
摘要:
A microelectromechanical (MEMS) sensor, such as an accelerometer, has one more proof masses that respond to movement of the sensor, the movement of which is measured based on a distance between the one or more proof masses and on one or more sense electrodes. The accelerometer also has a plurality of auxiliary electrodes and a signal generator configured to apply an auxiliary signal having a first harmonic frequency to the plurality of auxiliary electrodes. Circuitry receives a sensed signal from the plurality of sense electrodes and identifies a portion of the sensed signal having the first harmonic frequency. Based on this identified portion of the sensed signal, the circuitry determines whether a residual voltage is present on the one or more proof masses or on the one or more sense electrodes, and the circuitry modifies the operation of the accelerometer when the residual voltage is determined to be present in order to compensate for the residual voltage.
摘要:
An electromechanical device comprises a substrate structure, a set of electrodes, one or more anchor trenches, and one or more multi-faced components. For example, each of the one or more multi-faced components comprises an isolation region formed on a first portion of the surface of the component, a high resistance region formed on a second portion of the surface of the component, and a low resistance region formed on a third portion of the surface of the component. For example, the synapse device is configured to provide an analog resistive output, ranging between the high resistance region and the low resistance region, from at least one of the set of electrodes in response to a pulsed voltage input to at least another one of the set of electrodes.
摘要:
A method is disclosed. The method comprises fabricating a device layer on a top portion of a semiconductor wafer that comprises a substrate. The device layer comprises an active device. The method also comprises forming a trap rich layer at a top portion of a handle wafer. The forming comprises etching the top portion of the handle wafer to form a structure in the top portion of the handle wafer that configures the trap rich layer. The method also comprises bonding a top surface of the handle wafer to a top surface of the semiconductor wafer. The method also comprises removing a bottom substrate portion of the semiconductor wafer.
摘要:
A mechanical resonator includes a spring-mass system, wherein the spring-mass system comprises a phase-change material. The mechanical resonator typically comprises an electrical circuit portion, coupled to the phase-change material to alter a phase configuration within the phase-change material. Methods of operation are also disclosed.
摘要:
The disclosed subject matter provides thin films including a metal silicide and methods for forming such films. The disclosed subject matter can provide techniques for tailoring the electronic structure of metal thin films to produce desirable properties. In example embodiments, the metal silicide can comprise a platinum silicide, such as for example, PtSi, Pt2Si, or Pt3Si. For example, the disclosed subject matter provides methods which include identifying a desired phase of a metal silicide, providing a substrate, depositing at least two film layers on the substrate which include a first layer including amorphous silicon and a second layer including metal contacting the first layer, and annealing the two film layers to form a metal silicide. Methods can be at least one of a source-limited method and a kinetically-limited method. The film layers can be deposited on the substrate using techniques known in the art including, for example, sputter depositing.
摘要:
There is provided an acceleration sensor in which outer surfaces of a plurality of beams in which piezo-resistive elements are provided and upper portions of a mass body and a support body connected to the plurality of beams may be enclosed by a protective layer to prevent electrical disturbances from being transferred from an external environment to the piezo-resistive elements.
摘要:
A MEMS backplate enables MEMS microphones with reduced parasitic capacitance. The MEMS backplate includes a central area and a perforation in the central area. A suspension area surrounds the central area at least partially. An aperture is disposed in the suspension area.
摘要:
A capacitive pressure sensor is provided. The capacitive pressure sensor includes a substrate; and a first electrode formed in one surface of the substrate and vertical to the surface of the substrate. The capacitive pressure sensor also includes a second electrode with a portion facing the first sub-electrode, a portion facing the second sub-electrode and a portion formed in the other surface of the substrate. Further, the capacitive pressure sensor includes a first chamber between the first electrode and the second electrode and a second chamber formed in the second electrode. Further, the pressure sensor also includes a first sealing layer formed on the second electrode; and a second sealing layer formed on the other surface of the substrate.