摘要:
Embodiment methods and systems for controlling the solubility of solutes in a membrane separation process are provided. Controlling solubility includes introducing a signal input to at least one solution used in the membrane separation process, such that the signal input changes the solubility of at least one solute in the at least one solution. Introducing the signal input is selected from the group of applying electromagnetic radiation to the at least one solution, applying mechanical input to the at least one solution, applying vibratory input to the at least one solution, changing a magnetic field of the at least one solution, introducing a secondary solute to the at least one solution, and removing a substance from the at least one solution.
摘要:
Polymer, comprising i) at least one oxazoline according to formula wherein R1, R2, R3 and R4 independently denote a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, a phenyl group, or a substituted phenyl group, and R5 denotes a noncyclic organic group having an unsaturated bond reactive in radical polymerization, ii) optionally at least one antiadhesive monomer, iii) optionally at least one biocidal monomer, iv) optionally at least one further monomer, wherein said polymer comprises at least one monomer selected from monomers ii) and iii).
摘要:
Examples are described including membrane fabrication systems using roll-to-roll processing to fabricate a forward osmosis membrane. Fabric supported by a solid sheet may be cast with a polymer and a selectivity layer may be applied to form the forward osmosis membrane. The forward osmosis membrane supported by the solid sheet may be delaminated using an alcohol.
摘要:
The invention relates to the treatment of water, including for example treatment in connection with hydrocarbon production operations. Silica in water produces undesirable scaling in processing equipment, which causes excess energy usage and maintenance problems. Electrocoagulation (EC) at relatively high water temperature followed by ultra-filtration (UF filtration) may be combined with forward osmosis (FO) to treat water. Water to be treated may be produced water that has been pumped from a subterranean reservoir. The treated water may be employed to generate steam. The treatment units (e.g., EC, forward osmosis, UF filtration, etc) can be configured into one system as an on-site installation or a mobile unit for on-site or off-site water treatment.
摘要:
The present invention relates to a hollow fiber (HF) module having fibers modified with a thin film composite (TFC) layer comprising aquaporin water channels.
摘要:
A forward osmosis membrane for seawater desalination and a method for preparing the same. The forward osmosis membrane has a composite membrane structure including a nonwoven fabric layer; a hydrophilic polymer layer; and a polyamide layer. The hydrophilic polymer layer formed on the nonwoven fabric layer facilitates an inflow of water from the feed water to the draw solution to enhance flux and realize high water permeability in the direction of osmosis. The polyamide layer not only secures contamination resistance and chemical resistance but also minimizes the back diffusion of salts of the draw solution in the direction of reverse osmosis. Hence, the forward osmosis membrane of the present invention is greatly useful for desalination of high-concentration seawater.
摘要:
It is to provide a process for manufacturing potable water from a liquid to be treated, such as seawater by using forward osmosis membrane, wherein the solution after the separation of water from dilute draw solution diluted by the migration of water from the liquid to be treated, is stably regenerated and reutilized and an apparatus therefor, and the process and apparatus are a process for manufacturing potable water which comprises, a forward osmosis step wherein a liquid of which solvent is water is allowed to contact with a draw solution produced by dissolving a prescribed amount of a volatile material in water through a semi-permeable membrane, and water in said liquid is allowed to migrate to said draw solution through said semi-permeable membrane, a distillation step wherein a dilute draw solution having been diluted with water which was produced in said step is adjusted to a prescribed temperature, and then is delivered to a distillation column where gas comprising the volatile material and water vapor is discharged from the top of the column and potable water is discharged from the bottom of the column, and a cooling • regeneration step wherein said draw solution is regenerated by cooling said gas and an apparatus therefor.
摘要:
Nanoparticle functionalized membranes, where the surface of the membranes is nanoparticle functionalized. The nanoparticles closest to the membrane surface are covalently bonded to the membrane surface. For example, the membranes are forward osmosis, reverse osmosis, or ultrafiltration membranes. The membranes can be used in devices or water purification methods.
摘要:
An energy efficient desalination process that does not produce waste products involves the extraction of water from a first solution, such as seawater, by using a second concentrated solution to draw the water from the first solution across a semi-permeable membrane. By manipulating the equilibrium of the soluble and insoluble species of solute within the second solution in favor of the soluble species of the solute, a saturated second solution can be used to generate osmotic pressure on the first solution. Also, by adjusting the equilibrium in favor of the less soluble species after the water has been drawn from the first solution, a portion of the solute can easily be precipitated out. Heating the second solution decomposes the solute into its constituent gases. The constituent gases and precipitated solute may be recycled through the process to affect the changes in equilibrium and eliminate waste products. Additionally, by using the waste steam from industrial sources and a heat pump to effectively distribute heat through the present method, the present method exhibits greater energy efficiency than prior art methods.