Abstract:
Water treatment systems including electrically-driven and pressure-driven separation apparatus configured to produce a first treated water suitable for use as irrigation water and a second treated water suitable for use as potable water from one of brackish water and seawater and methods of operation of same.
Abstract:
Methods of and apparatuses for removing selenium from water. Sulfates and organics are first removed to discourage such materials from overwhelming subsequent processing of water to remove selenium.
Abstract:
A low energy system and process for seawater desalination wherein the system has at least an electrodialysis apparatus that produces partially desalinated water and a brine by-product, an ion exchange softener, and at least one electrodeionization apparatus. The softener treats the partially desalinated water stream to remove or reduce the amount of scaling material in order to maintain deionization apparatus efficiency and reduce energy consumption. The softener has the capability of removing a higher ratio of calcium ions to magnesium ions than is in the partially desalinated stream, thereby reducing softener size and energy use. The deionization apparatus produces product water of the desired properties. The brine stream may be used to regenerate the softener.
Abstract:
Unsuitable water from coal bed methane production, CBMPW, is ozonated in a reactor to oxidize iron and the manganese content,—iron from ferrous to ferric, and the manganese from +2 to +4—and kill microbes and destroy other organic material. The water after such treatment is run through a separation means and then a rotating filter, followed by capacitive deionization, to yield clean water, which is treated further to adjust the sodium content to render the water suitable for domestic and agricultural purposes. Some product water is returned through the capacitive deionization cells when no voltage is applied to clean the cells for the next voltage application cycle, and some product water may also be run back through the separation means to help clean out the crud. This product water is suitable for irrigation and can depending on local law be used for drinking either without or with further treatment.
Abstract:
Methods and apparatus for complex treatment of contaminated liquids are provided, by which contaminants are extracted from the liquid. The substances to be extracted may be metallic, non-metallic, organic, inorganic, dissolved, or in suspension. The treatment apparatus includes at least one mechanical filter used to filter the liquid solution, a separator device used to remove organic impurities and oils from the mechanically filtered liquid, and an electroextraction device that removes heavy metals from the separated liquid. After treatment within the treatment apparatus, metal ion concentrations within the liquid may be reduced to their residual values of less than 0.1 milligrams per liter. A Method of complex treatment of a contaminated liquid includes using the separator device to remove inorganic and non-conductive substances prior to electroextraction of metals to maximize the effectiveness of the treatment and provide a reusable liquid.
Abstract:
A method for making reverse osmosis permeate water and mineral water from deep seawater includes the steps of: a) sand-filtering or ultra-filtering the deep seawater; b) conducting a first nano-filtering step to nano-filter the deep seawater after the step a) to obtain first nano-filtration permeate water and first nano-filtration concentrated water; c) filtering the first nano-filtration permeate water using a reverse osmosis apparatus to obtain reverse osmosis permeate water and reverse osmosis concentrated water; and d) treating the first nano-filtration concentrated water by electrodialysis to obtain anion-rich water, cation-rich water, and mineral water.
Abstract:
Water decontamination systems including one or more of an aerator module, a separator tower, and a contamination gas treatment system are described herein. Such systems are capable of removing contaminants, including volatile organic compounds, from the water. Certain volatile organic contaminants can be removed at high efficiencies. The systems may be automated to remove the contaminants and produce cleaned water on a continuous basis.
Abstract:
There is provided a process for purification treatment of wastewater containing an organic substance. There is provided a process for purification treatment of wastewater containing an organic substance by carrying out supercritical treatment or subcritical treatment, which comprises subjecting the wastewater to at least one solid-liquid separation pretreatment selected from separation treatment with a flocculant, sedimentation treatment, flotation treatment and filtration treatment; and then subjecting the wastewater to primary treatment as biological treatment; and subsequently purifying the wastewater by treatment including secondary treatment as supercritical treatment or subcritical treatment.
Abstract:
A materials treatment system which includes filtration and treatment of solid and liquid components of a material, such as a waste material. A filter or substrate assembly is provided which allows liquids to pass therethrough, while retaining solids. The solids are then incinerated utilizing microwave energy, and the liquids can be treated after passing through the filter element, for example, utilizing a treatment liquid such as an oxidant liquid. The filter assembly can also include an exhaust filter assembly which removes solids or particulate matter from exhaust gasses, with the retained solids/particulates incinerated utilizing microwave energy.
Abstract:
The invention relates to the treatment of water, including for example treatment in connection with hydrocarbon production operations. Silica in water produces undesirable scaling in processing equipment, which causes excess energy usage and maintenance problems. Electrocoagulation (EC) at relatively high water temperature followed by ultra-filtration (UF filtration) may be combined with forward osmosis (FO) to treat water. Water to be treated may be produced water that has been pumped from a subterranean reservoir. The treated water may be employed to generate steam. The treatment units (e.g., EC, forward osmosis, UF filtration, etc) can be configured into one system as an on-site installation or a mobile unit for on-site or off-site water treatment.