Abstract:
A display module including a plurality of pixels is provided. The display module according to an embodiment includes a plurality of inorganic light emitting elements constituting the plurality of pixels, a plurality of pixel circuits provided for each of the plurality of inorganic light emitting elements and providing a driving current corresponding to an applied grayscale data voltage to each of the plurality of inorganic light emitting elements, and an ESD (Electro Static Discharge) protection circuit arranged in at least one of the plurality of pixel circuits.
Abstract:
A display panel is provided. The display panel may include a glass, a driver formed on a first surface of the glass, and a circuit layer formed on a second surface of the glass. The circuit layer may include a plurality of pixel circuits configured to drive a plurality of micro light emitting diodes (LEDs) forming a plurality of pixels of the display panel; a plurality of driving circuits which are respectively connected to the driver via wiring formed over at least one side surface of the glass, and configured to supply driving signals to the plurality of pixel circuits based on signals received from the driver; and a plurality of redundancy driving circuits connected to the plurality of respective driving circuits in parallel, the plurality of redundancy driving circuits having a same circuit structure as the plurality of respective driving circuits.
Abstract:
Provided is a method and apparatus for estimating a battery state. A method of estimating a battery state that includes determining whether a previous state to a rest state of a battery is a charging state or a discharging state; selecting a current profile comprising one or both of a charging pulse and a discharging pulse based on the previous state of the battery; stabilizing an open circuit voltage (OCV) of the battery by applying the current profile to the battery; and measuring the stabilized OCV.
Abstract:
A display panel is provided. In the display panel, a plurality of pixels respectively including a plurality of sub pixels are arranged in a matrix form on a glass. Each of the plurality of sub pixels includes a driving circuit disposed on the glass and configured to receive a pulse amplitude modulation (PAM) data voltage and a pulse width modulation (PWM) data voltage, and an inorganic light emitting device mounted on the driving circuit and configured to be electrically connected to the driving circuit, and to emit a light based on a driving current provided from the driving circuit. The PAM data voltage is applied at once to the plurality of pixels included in the display panel. The driving circuit is configured to control a grayscale of a light emitted by the inorganic light emitting device by controlling a pulse width of a driving current having an amplitude corresponding to the applied PAM data voltage based on the applied PWM data voltage.
Abstract:
An electronic apparatus is disclosed, including a touch screen display; a communication unit configured to transceive data via a network; a processor; and a memory configured to store instructions to, which when executed, instruct the processor to identify a total data usage transceived through the communication unit if the data usage transceived through the communication unit reaches a predetermined reference value, determine whether a difference value between the total data usage and a predetermined warning value satisfies a condition to change the reference value, and change the reference value based on the determination result.
Abstract:
Provided are three-dimensional nonvolatile memory devices and methods of fabricating the same. The memory devices include semiconductor pillars penetrating interlayer insulating layers and conductive layers alternately stacked on a substrate and electrically connected to the substrate and floating gates selectively interposed between the semiconductor pillars and the conductive layers. The floating gates are formed in recesses in the conductive layers.
Abstract:
A method and apparatus estimating a state of a battery are provided. A battery life estimation apparatus may charge a battery using a normal charge rate (C-rate) during a charging interval of a charging cycle and a low charge rate (C-rate) in a low-rate charging interval of the charging cycle, may compare a determined change in an electrical physical quantity of the battery over time to a reference curve, corresponding to a life of the battery, for an initial state of the battery, in the low-rate charging interval, and may estimate the life of the battery based on a result of the comparing.
Abstract:
A particle counter may include a housing having an inlet, an outlet, and a window therebetween. The inlet and the outlet may be configured such that a fluid can be flowed therethrough. A plurality of light sources may be arranged outside the housing to provide lights of different wavelengths into the housing through the window. Sensors may be provided outside the housing to detect fractions of the lights scattered by a bubble and/or a particle in the fluid. A control part may be configured to monitor intensities of the lights detected by the sensors and to analyze a difference in intensity between the scattered lights, thereby distinguishing the particles from the bubbles in the fluid.
Abstract:
An electronic device includes processing circuitry configured to calculate an intra metric based on cross correlation of first reference signal symbols (RSs) included in a first precoding resource block group (PRG) to which a target resource element (RE) belongs, calculate an inter metric based on cross correlation of one or more second RSs and one or more among the first RSs, the one or more second RSs being included in a second PRG adjacent to the first PRG along a frequency axis of a physical channel, the one or more second RSs being in proximity to the target RE, and the physical channel being received from a base station, compare a first ratio between the intra metric and the inter metric with a threshold ratio to obtain a comparison result, and determine a channel estimation mode with respect to the target RE based on the comparison result.
Abstract:
A robot cleaner station includes: a base; a pad cleaner provided in an upper surface of the base and configured to place and clean a mop pad; a pad moving device configured to move a used mop pad from the pad cleaner and place a cleaned mop pad on the pad cleaner; and one or more processors, where, by executing one or more instructions stored on at least one memory, the one or more processors are configured to: control the pad moving device to move the used mop pad to the pad cleaner, and control the pad cleaner to clean the used mop pad based on a robot cleaner obtaining the cleaned mop pad and moving away from the base.