Abstract:
The integrated electronic device is for detecting a local parameter related to a force observed in a given direction, within a solid structure. The device includes at least one sensor configured to detect the above-mentioned local parameter at least in the given direction through piezo-resistive effect. At least one damping element, integrated in the device, is arranged within a frame-shaped region that is disposed around the at least one sensor and belongs to a substantially planar region comprising a plane passing through the sensor and perpendicular to the given direction. Such at least one damping element is configured to damp forces acting in the planar region and substantially perpendicular to the given direction.
Abstract:
Embodiments of the present disclosure are directed to flat no-lead packages with wettable sidewalls or flanks. In particular, wettable conductive layers are formed on the package over lateral portions of the leads and on portions of the package body, which may be encapsulation material. The wettable conductive layers may also be formed on bottom surfaces of the package body and the leads. The wettable conductive layers provide a wettable flank for solder to wick up when the package is mounted to a substrate, such as a PCB, using SMT. In particular, solder that is used to join the PCB and the package wicks up the side of the wettable conductive layers along a side surface of the package. In that regard, the solder is exposed and coupled to the side surface of the package at the wettable conductive layers, thereby allowing for a visual inspection of the solder joints. The wettable conductive layers are formed on the package after the package body has been formed. In one embodiment, the wettable conductive layers are printed on the package body and the leads by Aerosol Jet® technology.
Abstract:
An assembly is provided including one or more semiconductor dice attached on a substrate, the semiconductor die provided with electrically-conductive stud bumps opposite the substrate. The stud bumps embedded in a molding compound molded thereon are exposed to grinding thus leveling the molding compound to expose the distal ends of the stud bumps at a surface of the molding compound. Recessed electrically-conductive lines extending over said surface of the molding compound with electrically-conductive lands over the distal ends of the stud bumps. A further molding compound is provided to cover the recessed electrically-conductive lines and surrounding the electrically-conductive lands.
Abstract:
A semiconductor device including one or more semiconductor dice, a lead frame including an array of signal-carrying leads electrically coupled with the semiconductor die, and a power supply connection for the at least one semiconductor die arranged centrally thereof.
Abstract:
A packaged semiconductor device includes an insulating material forming a side surface of the packaged semiconductor device. An integrated-circuit chip is embedded in the insulating material and includes a communication circuit. A wiring system is embedded in the insulating material and electrically couples the integrated-circuit chip with a plurality of package contact elements. A first communication pad is formed in the side surface and is operatively coupled to the communication circuit to enable signal exchange through the first communication pad.
Abstract:
A tensile stress measurement device is to be attached to an object to be measured. The tensile stress measurement device may include an IC having a semiconductor substrate and tensile stress detection circuitry, the semiconductor substrate having opposing first and second attachment areas. The tensile stress measurement device may include a first attachment plate coupled to the first attachment area and extending outwardly to be attached to the object to be measured, and a second attachment plate coupled to the second attachment area and extending outwardly to be attached to the object to be measured. The tensile stress detection circuitry may be configured to detect a tensile stress imparted on the first and second attachment plates when attached to the object to be measured.
Abstract:
An embodiment for manufacturing electronic devices is proposed. The embodiment includes the following phases: a) forming a plurality of chips in a semiconductor material wafer including a main surface; each chip includes respective integrated electronic components and respective contact pads facing the main surface; said contact pads are electrically coupled to the integrated electronic components; b) attaching at least one conductive ribbon to at least one contact pad of each chip; c) covering the main surface of the semiconductor material wafer and the at least one conductive ribbon with a layer of plastic material; d) lapping an exposed surface of the layer of plastic material to remove a portion of the plastic material layer at least to uncover portions of the at least one conductive ribbon, and e) sectioning the semiconductor material wafer to separate the chips.
Abstract:
A semiconductor structure includes at least a semiconductor body, a delimiting structure delimiting a cup-shaped recess in the body and a conductive region in the recess. The conductive region is made of a low-melting-temperature material, having a melting temperature lower than that of the materials forming the delimiting structure.
Abstract:
A wafer-level package for a MEMS integrated device, envisages: a first body integrating a micromechanical structure; a second body having an active region integrating an electronic circuit, coupled to the micromechanical structure; and a third body defining a covering structure for the first body. The second body defines a base portion of the package and has an inner surface coupled to which is the first body, and an outer surface provided on which are electrical contacts towards the electronic circuit; a routing layer has an inner surface set in contact with the outer surface of the second body and an outer surface that carries electrical contact elements towards the external environment. The third body defines a covering portion for covering the package and is directly coupled to the second body for closing a housing space for the first body.
Abstract:
A packaged semiconductor device includes a communication pad formed in a side surface, which is operatively coupled to a communication circuit so as to enable the establishing of a wireless communication channel to an adjacently positioned packaged semiconductor device. The communication pad may be formed upon cutting a block including the packaged semiconductor device and an appropriately positioned and dimensioned conductor.