Abstract:
An electronic device includes one or more light emitters for emitting light toward an object and one or more light detectors for collecting light exiting the object. A reflective coating, surface, or surface finish can be applied adjacent to the area to which light is emitted and/or through which light exits in order to increase the light collected by the light detector. The reflective coating can be oriented so as to reflect light back into the object.
Abstract:
An electronic device may have a display with a cover layer. A light-based component such as an infrared-light proximity sensor or other infrared-light-based component may be aligned with a window in the display cover layer. The window may block visible light and transmit infrared light. A coating in the window may include a thin-film filter formed from a stack of inorganic dielectric layers. The thin-film filter may block visible light and transmit infrared light. The coating may also include at least one layer of material such as a semiconductor material that absorbs visible light and that passes infrared light. This material may be interposed between the thin-film filter and the display cover layer. Antireflection properties and color adjustment properties may be provided using thin-film layers between the thin-film filter and the display cover layer.
Abstract:
Methods of altering the surface of a metallic glass are provided. The methods include blasting and oxidation of a metallic glass surface, blasting a metallic glass surface using multiple shot media sizes, and thermal spray blasting a metallic glass surface with controlled cooling.
Abstract:
A screen having a hydrophobic portion to resist the entry of liquid into an acoustic module and a hydrophilic portion to aid in the removal of liquid from an acoustic chamber is described. The screen is placed in an orifice in the acoustic module between the external environment and the internal acoustic chamber.
Abstract:
A ceramic part and methods for making the ceramic part are disclosed. A green body or non-sintered part may be formed using a casting or molding process. The green body may not be sintered or may be partially sintered before machining one or more features into a surface of the green body. After machining, the component may be fully sintered to create a hardened ceramic component.
Abstract:
Embodiments disclosed are directed to a woven fabric band that is capable of being secured to another object using threads or the band itself. The woven fabric band may include an inner layer having a first temperature melting point and an outer layer having a second temperature melting point that is higher than the first temperature melting point. When heat having the first temperature is applied to the woven fabric band, the inner layer of the woven fabric band melts while the outer layer remains in its original state. When the inner layer melts, the inner layer conforms to a first shape. As a result of the inner layer conforming to the first shape, the outer layer also conforms to the same shape.
Abstract:
An improved outer layer of plating comprising a binary metal alloy of gold and palladium is employed on connector contacts. The binary metal alloy is plated on at least the contact surface of the contacts. Intermediate plating layers can be applied between the outer layer of gold and palladium and the conductive base of the contacts. The binary metal alloy of gold and palladium may be configured to have a mostly gold or a mostly silver appearance, depending upon the relative concentration of gold and palladium in the binary metal alloy.
Abstract:
Forming a 3D topology by forming a monolayer of nano-particles on a stainless steel surface, masking the stainless steel surface forming at least one unmasked regions, the unmasked region having an average density of nano-particles less than a critical average density, and introducing a plurality of exogenous atoms into the stainless steel surface only in the unmasked regions, the exogenous atoms causing the associated metal lattice to expand and harden and have an increase corrosion resistance, thereby selectively forming a 3D topology on the stainless steel surface.
Abstract:
An electronic device may be provided with conductive structures such as conductive housing structures. A visible-light-reflecting coating may be formed on the conductive structures. The coating may have adhesion and transition layers and a thin-film interference filter on the adhesion and transition layers. The thin-film interference filter may be a four-layer interference filter stacked directly onto the adhesion and transition layers and having an uppermost SiCrN layer, a lowermost SiN layer, and interleaved SiH and SiN layers. If desired, an opaque coloring layer such as a Cr layer may be disposed between the interference filter and the adhesion and transition layers. The coating may exhibit a deep red or orange color that has a relatively uniform visual response even when the underlying conductive structures have a three-dimensional shape.
Abstract:
An electronic device includes electrical components in a housing. The components may include optical components such as a display. Protective structures may be used to protect the optical components. The protective structures may include one or more protective transparent layers such as layers of glass or crystalline material such as sapphire. The protective transparent layers may be coated with an oleophobic coating. To enhance coating durability, catalyst may be used to help bond the oleophobic coating. An adhesion promotion layer such as a silicon oxide layer may be deposited on the transparent protective layer. A catalyst layer such as a layer of sodium fluoride may be deposited on the adhesion promotion layer. The oleophobic material may be evaporated or otherwise deposited on the catalyst layer. Heat and moisture may help the oleophobic material form chemical bonds with the adhesion promotion layer, thereby forming a durable oleophobic coating.