Abstract:
A method and associated apparatus using delay correlation for determining whether an input signal is a target signal is provided. The method includes sampling the input signal to generate 2N sample values, the sample values having a period N, where N is a positive integer; calculating the 2N sample values to obtain a first value according to a first operation method; calculating the 2N sample values to obtain a second value according to a second operation method; obtaining a determination value according to the first value and the second value; and determining whether the input signal is the target signal according to the determination value and a threshold.
Abstract:
A variable injection-strength injection-locked oscillator (ILO) is described. The variable injection-strength ILO can output an output clock signal based on an input clock signal. The variable injection-strength ILO can pause, restart, slow down, or speed up the output clock signal synchronously with respect to the input clock signal in response to receiving power mode information. Specifically, the variable injection-strength ILO can be operated under relatively strong injection when the input clock signal is paused, restarted, slowed down, or sped up.
Abstract:
Apparatuses and methods are disclosed for oscillators that are substantially insensitive to supply voltage variations. In one such example apparatus, a capacitance circuit is configured to be charged and discharged. Charging and discharging circuits are coupled to the capacitance circuit and configured to charge and discharge, respectively, the capacitance circuit by charging and discharging currents responsive to charge and discharge signals. A control circuit is coupled to the charging circuit and the discharging circuit, and is configured to provide the charge and discharge signals responsive to a voltage of the capacitance circuit, and is further configured to provide an oscillation signal responsive to the voltage of the capacitance circuit. The charging current, the discharging current, or both the charging and discharging currents are proportional to a difference between a first reference voltage and a second reference voltage.
Abstract:
A periodic signal generator includes a resonant LC tank circuit that generates a periodic reference signal at a first frequency at a differential output thereof. A temperature-responsive frequency compensation module is electrically coupled to the differential output of the resonant LC tank circuit. This module includes a temperature dependent voltage control module that generates a temperature dependent control voltage and an array of switchable capacitive modules that is electrically coupled to a first node of the differential output of the resonant LC tank circuit and responsive to the temperature dependent control voltage and a plurality of switching coefficients. The array of switchable capacitive modules includes a fixed capacitor having a first terminal electrically coupled to the first node and a voltage-controlled variable capacitor having a first terminal electrically coupled to the first node.
Abstract:
An oscillation device corrects a setting value of an output frequency based on a detection result of an ambient temperature of a crystal unit. The oscillation device includes: an oscillation circuit; a temperature detection portion that detects the ambient temperature and outputs a digital value corresponding to the temperature detection value; an accumulator that accumulates the digital value; a rounding processing portion that performs rounding for the digital value accumulated in the accumulator; a digital filter that receives the digital value obtained from the rounding processing portion and obtains a step response gradually increasing from “0” and converging to a step value; and a correction value obtaining portion that obtains a frequency correction value of the oscillation frequency of the oscillation circuit caused by a difference between the ambient temperature and a reference temperature, wherein the setting value of the output frequency is corrected based on the frequency correction value.
Abstract:
A heater device includes a temperature detector, a heater control circuit, a heater, a voltage supply path, and an overheat prevention circuit. The overheat prevention circuit includes a positive-temperature-coefficient thermistor and a pull-up resistor. The positive-temperature-coefficient thermistor is interposed on the voltage supply path in a position for being heated by the heater. The pull-up resistor that includes: one end connected between the heater and the positive-temperature-coefficient thermistor, and another end connected to a direct current power source. The control voltage to be applied to the heater is restricted to a voltage at a connection point between the positive-temperature-coefficient thermistor and the pull-up resistor when the control voltage from the heater control circuit is abnormally decreased.
Abstract:
A bias current circuit controls an oscillator that generates an oscillation signal of a frequency corresponding to an input current. The circuit includes a part that detects fluctuation of a control current for variably controlling the frequency of the oscillation signal and a part that generates an input current in which a fluctuation component of the control current is canceled using a current for cancelling the detected fluctuation of the control current.
Abstract:
A voltage controlled oscillator (VCO) core for cancelling a supply noise is described. The VCO core includes an input node that receives the supply noise. The VCO core also includes a noise path coupled to the input node. The VCO core additionally includes a cancellation path coupled to the input node and the noise path. The cancellation path includes a programmable gain circuit coupled with a first terminal of a varactor. The supply noise passes through the programmable gain circuit to produce a cancellation noise.
Abstract:
Circuits, integrated circuits, and methods are disclosed for bimodal disable circuits. In one such example method, a counter is maintained, with the counter indicating a logic level at which an output signal will be disabled during at least a portion of one of a plurality of disable cycles. The logic level indicated by the counter is transitioned. An input signal is provided as the output signal responsive to the enable signal indicating that the output signal is to be enabled, and the output signal is disabled at the logic level indicated by the counter responsive to the enable signal indicating that the output signal is to be disabled.
Abstract:
Methods and systems are provided to calibrate an oscillator circuit to reduce frequency pulling as a result of a change in power to a portion of the oscillator circuit. In an embodiment, an oscillator is coupled to a clock buffer circuit and a tuning capacitor configured to tune a frequency of the oscillator to a baseline frequency required for cellular communications. A change in power to the clock buffer circuit initiates a change in an amount of capacitance seen by the oscillator, which negatively impacts the tuning of the oscillator. A register stores a frequency offset caused by the change in power, and the tuning capacitor is adjusted, using the frequency offset, in response to the change in power, such that the total amount of capacitance seen by the oscillator is not changed when the change in power occurs.