Abstract:
An example embodiment may include a hyperspectral analyzation subassembly configured to obtain information for a sample. The hyperspectral analyzation subassembly may include one or more transmitters configured to generate electromagnetic radiation electromagnetically coupled to the sample, one or more sensors configured to detect electromagnetic radiation electromagnetically coupled to the sample, and an electromagnetically transmissive window. At least one of the sensors may be configured to detect electromagnetic radiation from the sample via the window. The hyperspectral analyzation subassembly may include an analyzation actuation subassembly configured to actuate at least a portion of the hyperspectral analyzation subassembly in one or more directions of movement with respect to the sample.
Abstract:
The present invention generally pertains to a system, method and kit for the detection and measurement of spectroscopic properties of light from a sample, or the scalable detection and measurement of spectroscopic properties of light from each sample present among multiple samples, simultaneously, wherein the system comprises: an optical train comprising a dispersing element; and an image sensor. The light detected and measured may comprise light scattered from a sample, emitted as chemiluminescence by a chemical process within a sample, selectively absorbed by a sample, or emitted as fluorescence from a sample following excitation.
Abstract:
A system and method of high-speed microscopy using a two-photon microscope with spectral resolution. The microscope is operable to provide spectrally resolved, multi-dimensional images from a single scan of a sample. The microscope may include one of a multi-beam point scanning microscope, a single beam line scanning microscope, and a multi-beam line scanning microscope. The microscope includes a descanning arrangement such that emitted fluorescence is static on a receiving detector. The detector is a narrow detector with a width at least half the size of the length, to reduce the amount of pixel data being transmitted and improve scan speeds. The microscope may also incorporate one or more binning techniques whereby pixels are binned together to improve resolution or scan speeds.
Abstract:
An wavefront sensor uses a calibration wave generator to calculate correction factors to be applied to ratiometric combinations of position sensor output signals to determine real centroid deflection values.
Abstract:
A sequential wavefront sensor includes a light source, a beam deflecting element, a position sensing detector configured to output a plurality of output signals and a plurality of composite transimpedance amplifiers each coupled to receive an output signal. The output of each composite transimpedance amplifier is phase-locked to a light source drive signal and a beam deflecting element drive signal.
Abstract:
A fluorescence spectrophotometer according to the present invention includes: a light source 1; a sample cell 3; an excitation-side light-dispersing system 2 for dispersing a light from the light source 1 and for casting a desired wavelength of light into the sample cell 3; an emission-side light-dispersing system 4 for dispersing a light emitted from the sample cell 3, the emission-side light-dispersing system 4 being located off an optical path of a transmitted light exiting from the sample cell 3 after being cast from the excitation-side light-dispersing system 2 into the sample cell 3; and a photodetector 5 capable of detecting, among the light from the emission-side light-dispersing system 4, an emission light having the same wavelength as the light cast from the excitation-side light-dispersing system 2 into the sample cell 3.
Abstract:
A spectroscopic system is described that provides at least one of focus of an excitation beam onto a sample, automatic focus of an optical system of the spectroscopic system for collecting a spectroscopic signal, and/or averaging of excitation intensity over a surface area of the sample.
Abstract:
A charge controlling circuit controls charging of a lithium-ion rechargeable battery. An electric power supplied from an external charger to the lithium-ion rechargeable battery is taken by a charging terminal. When the charging terminal is connected to the external charger, whether or not a charge prohibition condition is satisfied is determined by a CPU. A charging operation is prohibited when the charge prohibition condition is satisfied, but is permitted when the charge prohibition condition is not satisfied. Here, the charge prohibition condition includes a shortest time condition that a time during which the charging terminal is detached from the external charger is above a defined time decided in view of an instantaneous power interruption.
Abstract:
Methods of selecting spectral elements and system components for a multivariate optical analysis system include providing spectral calibration data for a sample of interest; identifying a plurality of combinations of system components; modeling performance of a pilot system with one of the combinations of system components; determining optimal characteristics of the pilot system; and selecting optimal system components from among the combinations of system components.