Abstract:
The various technologies presented herein relate to fabrication and operation of a heat exchanger that is configured to extract heat from an underlying substrate. Heat can be extracted by way of an air gap formed between an impeller and a baseplate. By utilizing a pump to create an initial air gap that is further maintained by rotation of the impeller relative to the baseplate, a spring can be utilized that can apply a force of greater magnitude to the impeller than is used in a conventional approach, thus enabling the weight of the impeller to be negligible with respect to a width of the air gap, thereby conferring the desirable feature of orientation independence with respect to gravity with no performance degradation.
Abstract:
A removable radiator fin assembly adapted to removably receive a radiator pipe. The removable fin assembly includes a first plurality of fins and a second plurality of fins having collar flanges sized to receive a radiator pipe. The fins are received on first and second spacer rods, respectively and are hingedly connected by a hinge rod such that the first and second plurality of fins are pivotally movable about the hinge rod between an open position and a closed position. In the open position, the first and second plurality of fins are positionable over the radiator pipe. In the closed position, the collar flanges of the first and second plurality of fins substantially surround the radiator pipe. A fin clamp secures the first and second plurality of fins together in the closed position about the radiator pipe.
Abstract:
Technologies for modular cooling systems for cooling electronic components installed in equipment racks are provided herein. A modular cooling system comprises a cold plate and a support manifold connected to the cold plate. Together, the support manifold and cold plate define a fluid path for cooling fluid from the support manifold to the cold plate. The modular cooling system also includes an equipment carrier including equipment cooled by the cold plate.
Abstract:
A heat exchanger apparatus including a surface cooler and a passive automatic retraction and extension system coupled to the surface cooler. The surface cooler having disposed therein one or more fluid flow channels configured for the passage therethrough of a heat transfer fluid to be cooled. The heat transfer fluid in a heat transfer relation on an interior side of said one or more fluid flow channels. The surface cooler including a plurality of fins projecting from an outer surface thereof. The passive automatic retraction and extension system including a thermal actuation component responsive to a change in temperature of at least one of the heat transfer fluid and a cooling fluid flow so as to actuate a change in a geometry of the surface cooler. Further disclosed is an engine including the heat exchanger apparatus.
Abstract:
The present invention provides a reaction vessel and apparatus for performing heat-exchanging reactions. The vessel has a chamber for holding a sample, the chamber being defined by a plurality of walls, at least two of the walls being light transmissive to provide optical windows to the chamber. The apparatus comprises at least one heating surface for contacting at least one of the plurality of walls, at least one heat source for heating the surface, and optics positioned to optically interrogate the chamber while the heating surface is in contact with at least one of the plurality of walls.
Abstract:
An evaporative cooler regulation system and method provides adaptable connectors and directional dispersion components that couple to an evaporative cooler and tubes for distribution and directional dispersion of a fluid, such as evaporated air. The evaporative cooler system also provides at least one aperture that facilitates external access to the controls of the evaporative cooler. In this manner, the evaporative cooler and the resultant fluid may be regulated externally. The fluid is further regulated by expanding and interchanging the number of distribution tubes that carry the fluid. A hood attaches to the evaporative cooler, forming a seal. The hood comprises apertures for accessing controls and also for dispersing the fluid. A tube coupler joins the hood and a tube. The tube disperses the fluid through an attached dispersion grill. The dispersion grill pivots to directionally disperse the fluid. A series of tubes extend the range of the system.
Abstract:
A method and apparatus of cooling electronic components when replacing a cooling device in an information technology system are disclosed. The apparatus may include first and second cooling device trays that may be slidably mounted within an information technology system. The cooling device trays may include one or more cooling devices that are movably mounted to the cooling device trays. The apparatus may pivot one or more of the cooling devices when a pivot member contacts a fixed member with the chassis.
Abstract:
The adjustable heat exchanger provides precise control of oven temperature in a pyrolysis reaction. The heat exchanger includes two sets of hollow non-circular discs, the discs of a movable set being interleaved with the discs of a stationary set. A first working fluid circulates through a heat source oven and through the hollow stationary discs, and a second working fluid circulates through the hollow rotating discs and a pyrolysis oven. The two fluids do not mix with one another, but are always completely separate from one another. Heat transfer depends upon the relative surface area of the rotary discs interleaved between the stationary discs. Minimum heat transfer occurs when the rotary discs are rotated to a position clear of the stationary discs, and maximum heat transfer occurs when the rotary discs are completely interleaved with the stationary discs.
Abstract:
A reaction vessel having a reaction chamber for holding a sample is fabricated by producing a housing having a rigid frame defining the minor walls of the chamber. The housing also defines a port for introducing fluid into the chamber. At least one sheet or film is attached to the rigid frame to form at least one major wall of the chamber. In preferred embodiments, two sheets or films are attached to opposite sides of the rigid frame to form two opposing major walls of the chamber, the major walls being connected to each other by the minor walls.
Abstract:
A mounting arrangement for mounting a cooler unit to a work machine has a traveling device, a machine body frame, an engine and the cooler unit disposed adjacent the engine. The arrangement includes a support deck provided in the machine body frame for supporting the cooler unit, an attachment unit for releasably fixing the cooler unit to the machine body frame and a movement mechanism provided between the cooler unit and the support deck, the movement mechanism allowing the cooler unit to effect a translational movement to change a distance relative to the engine.