Abstract:
Preparation and application of poly[[2,6′-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene][3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] as a semiconducting polymer.
Abstract:
Disclosed herein are activatable conductive compositions and methods of making and using activatable conductive compositions. In particular, activatable conductive monomers polymers are described and electrically conductive coatings that include activatable conductive polymers.
Abstract:
Provided are: a conjugated block copolymer capable of increasing the amount of optical absorption by a photoelectric conversion active layer and controlling the morphology thereof and capable of achieving excellent photoelectric conversion efficiency; and a photoelectric conversion element comprising a composition including an electron accepting material using this kind of conjugated block polymer.A π-electron conjugated block copolymer comprises: a polymer block (A) and a polymer block (B), each of which involves a monomer unit having at least one fused π-conjugated skeleton including at least one thiophene ring in one part of the chemical structure thereof, the polymer block (A) and the polymer block (B) have different monomer units from each other.
Abstract:
A polyarylene block copolymer can provide a solid polymer electrolyte and proton conductive membrane having high proton conductivity, high dimensional stability, and high mechanical strength. The polyarylene block copolymer also has reduced swelling in hot water and reduced shrinkage in drying. The polyarylene block copolymer includes a polymer segment having a sulfonic acid group, and a polymer segment having substantially no sulfonic acid group.
Abstract:
A transition metal complex obtained by contacting a bipyridine compound represented by the formula (1): wherein R1, R2 and R3 represent a C1-C10 alkyl group which may be substituted, etc., and R4 and R5 represent a hydrogen atom etc., with a compound of a transition metal belonging to Group 9, 10 or 11, and a process for producing a conjugated aromatic compound comprising reacting an aromatic compound (A) wherein one or two leaving groups are bonded to an aromatic ring with an aromatic compound (A) having the same structure as that of the above-mentioned aromatic compound (A) or an aromatic compound (B) being structurally different from the above-mentioned aromatic compound (A) and having one or two leaving groups bonded to an aromatic ring, in the presence of said transition metal complex.
Abstract:
In one embodiment of the present disclosure, a series of conjugated polymers used, among other things, as polymer solar cell or polymer photovoltaic device active layer materials, is provided. In one embodiment, the conjugated polymers have the general structure and formula shown in (I), wherein: R1 and R2 are independently selected from proton, halogens, alkyls, aryls and substituted aryls; Ar is selected from the group consisting of monocyclic, bicyclic and polycyclic arylene, or monocyclic, bicyclic and polycyclic heteroarylene. In another embodiment, the conjugated photovoltaic polymers are comprised of repeated units having the general structure of formula (II), wherein, R1, R2, R3, R4, R5, and R6 are independently selected from proton, alkyls, halogens, aryls, substituted aryls, and other kinds of substituents. Synthesis methods of several polymers of the present disclosure are provided, and absorption spectra and electrochemical cyclic voltammetry data of some polymers, and also the photovoltaic properties of the polymers in this present disclosure are also provided.
Abstract:
A block copolymer containing one or more segments containing an ionic group (hereinafter referred to as an “ionic segment(s)”) and one or more segments containing no ionic group (hereinafter referred to as a “nonionic segment(s)”), wherein at least one of the ionic segment or the nonionic segment contains: constituent units composed of an aromatic hydrocarbon polymer (hereinafter referred to as a “constituent unit”); and a first linker that links the constituent units with each other. A block copolymer and a polymer electrolyte material produced using the block copolymer are made feasible, in which the block copolymer can achieve high proton conductivity under low-humidity conditions, excellent mechanical strength and chemical stability, and enhanced in-process capability.
Abstract:
A macromolecular photonic crystal material including an A block and a B block is disclosed.the A block comprises a crystalline polyhedral oligomeric POSS, the macromolecular photonic crystal material represented by the structural formula 1.
Abstract:
Provided is a composition comprising: a charge-transporting substance that comprises N,N′-diphenylbenzidine; an electron-accepting dopant substance; and an organic solvent. This composition is suitable, for example, as a composition for the anode buffer layer of an organic thin film solar cell, said composition being used to produce a thin film that is suitable for use as an anode buffer layer that makes it possible to achieve an organic thin film solar cell having a high photoelectric conversion efficiency.
Abstract:
The invention relates to the field of polymers and olefin polymerization, and more specifically olefin metathesis polymerization. The invention provides regioregular alternating polymers and methods of synthesizing such polymers. To demonstrate, polymers were synthesized and modified with a FRET pair (Trp/Dansyl) post-polymerization.