摘要:
An electrical connector for supplying power to electrical equipment includes a first connector part with an electrically conductive pin and an insulating layer, and a second connector part with a socket. The electrically conductive pin in the first connector part is configured for engagement with the socket of the second connector part and for transmitting power or data or both through the electrically conductive pin to the socket part. The insulating layer is in intimate contact with and at least partially covering the electrically conductive pin and electrically insulates the pin from a body of the first connector part of the connector. The insulating layer includes a polymeric material having a repeat unit of formula: —O-Ph-Ph-O-Ph-CO-Ph- (I) and a repeat unit of formula —O-Ph-Ph-O-Ph-SO2-Ph-Ph-SO2-Ph- (II) wherein Ph represents a phenylene moiety; and wherein the repeat units I and II are in the relative molar proportions 95:5 to 80:20.
摘要:
A resin composition includes a phenoxy resin as a principal component. The phenoxy resin has a weight-average molecular weight of 40,000 or more. The phenoxy resin has, in the same or different molecules, a first structural unit derived from bisphenol S phenoxy and a second structural unit derived from a bisphenol epoxy other than the bisphenol S phenoxy. A content ratio of the first structural unit in the phenoxy resin is 20 mol% to 80 mol% relative to a total content of the first structural unit and the second structural unit constituting the phenoxy resin.
摘要:
The present invention relates to a proton conductive nanocomposite membrane and a method for manufacturing same, the proton conductive nanocomposite membrane having polyhedral oligomeric silsesquioxane (POSS) having a proton donor and POSS having a proton acceptor introduced into an aromatic hydrocarbon polymer membrane having a sulfonyl group. The nano-composite membrane of the present invention has both the POSS having a proton donor and the POSS having a proton acceptor added thereto, and thus protons (cations) that are generated are easily hopped in an ion channel by means of hydrogen bonding, and thus ionic conductivity is increased. In addition, the POSS used in the present invention has a very small size, and thus hardly obstructs proton migration in the ion channel in the polymer membrane, and thus excellent proton conductivity may be enabled. In addition, the proton conductive nanocomposite membrane by the present invention exhibits excellent mechanical strength even though the degree of sulfonation of the polymer membrane is increased.
摘要:
The present invention provides a gel comprising a physical network formed of polymer chain crystallites interconnected by amorphous chain segments. Functionalization of the chain segments between the crystallites forms a blocky distribution of functionality along the chain whereby the functionalities are concentrated in groups consisting of one or more functionalities, separated by non-functionalized runs of crystallizable segments of the polymer. Removal of the solvent from the gels, without reducing the gel volume, forms an aerogel.
摘要:
The invention relates to novel polymers containing grafted sodium or lithium bis(sulfonyl)imides, to the methods for the production thereof, and to the uses of same as electrolytes in batteries.
摘要:
The invention relates to novel polymers containing grafted sodium or lithium sulphonamides, production methods thereof and uses of same as electrolytes in batteries.
摘要:
It is an object of the present invention to provide a polymer electrolyte material which has excellent proton conductivity even under the conditions of a low humidity or a low temperature and is excellent in mechanical strength and fuel barrier properties, and which moreover can achieve high output, high energy density and long-term durability in forming a polymer electrolyte fuel cell therefrom, and a polymer electrolyte form article using the same and a method for producing the same, a membrane electrode assembly and a polymer electrolyte fuel cell, each using the same.The present invention employs the following means. Namely, the polymer electrolyte material of the present invention is a polymer electrolyte material including a constituent unit (A1) containing an ionic group and a constituent unit (A2) substantially not containing an ionic group, wherein a phase separation structure is observed by a transmission electron microscope and a crystallization heat measured by differential scanning calorimetry is 0.1 J/g or more, or a phase separation structure is observed by a transmission electron microscope and the degree of crystallinity measured by wide angle X-ray diffraction is 0.5% or more. Also, the polymer electrolyte form article, the membrane electrode assembly and the polymer electrolyte fuel cell of the present invention are characterized by being composed of such polymer electrolyte materials.
摘要:
A polymer electrolyte composition is excellent in practicality which has such an excellent chemical stability as to be able to withstand a strong oxidizing atmosphere during operation of a fuel cell and is capable of achieving excellent proton conductivity under a low-humidified condition and excellent mechanical strength and physical durability as well as a polymer electrolyte membrane, a membrane electrode assembly, and a polymer electrolyte fuel cell which use the polymer electrolyte composition. The polymer electrolyte membrane is a polymer electrolyte membrane that contains at least an ionic group-containing polymer electrolyte and a polyazole, which is a polymer electrolyte membrane in which a phase separation of 2 nm or larger in which the polyazole is a main component is not observed in transmission type electron microscopic observation.
摘要:
Provided are a tri-block copolymer and an electrolyte membrane prepared therefrom. The tri-block copolymer has a structure of polar moiety-containing copolymer block/non-polar moiety-containing copolymer block/polar moiety-containing copolymer block, or non-polar moiety-containing copolymer block/polar moiety-containing copolymer block/non-polar moiety-containing copolymer block, and is useful for an electrolyte membrane for fuel cells. The electrolyte membrane for fuel cells prepared from the tri-block copolymer exhibits superior dimensional stability and excellent fuel cell performance.
摘要:
[Summary]To provide a formed article of polymer electrolyte composition which exhibits excellent proton conductivity even under low-humidification conditions and under low-temperature conditions, which is excellent in chemical stability, mechanical strength, fuel shutoff properties, and which can achieve high output, high energy density, and excellent long-term durability when used in a polymer electrolyte fuel cell; and also to provide a polymer electrolyte fuel cell using thereof. The formed article of polymer electrolyte composition includes: a block copolymer having one or more of each of a hydrophilic segment (A1) containing an ionic group and a hydrophobic segment (A2) not containing an ionic group; and an additive, wherein the formed article forms co-continuous or lamellar phase separation structure, and the additive is hydrophilic.