摘要:
A compound including a cage-type structure of silsesquioxane wherein a group represented by Formula 1 or a salt thereof is directly linked to at least one silicon atom of the silsesquioxane, a composition including the compound, a composite formed therefrom, electrodes and an electrolyte membrane that include the composite, a method of preparing the compound, and a fuel cell including the electrodes and the electrolyte membrane. wherein in Formula 1, n is 1 or 2.
摘要:
The invention relates to a monolithic ionogel with an organic confinement matrix for at least one ionic liquid, and a method for manufacturing same. An ionogel according to the invention comprises a biopolymer confinement matrix with a cross-linked polysaccharide base and an ionic liquid confined in a network formed by the matrix, and it is such that the polysaccharide has siloxane cross-linking bridges, the ionogel being a chemical gel able to constitute a self-supported solid electrolyte by itself. This ionogel is obtained using a method comprising silanisation of the polysaccharide in a basic aqueous solution by a silanisation agent, and polycondensation of the silanised polysaccharide. In a first embodiment, this method comprises preparing a hydrogel with a polysaccharide base that is silanised and cross-linked by sol-gel, then exchange reactions of solvents with increasing hydrophobicities. In a second preferred embodiment, it comprises mixing a first solution comprising the ionic liquid in an acid medium and a second solution containing the silanised and non-cross-linked polysaccharide, such that its cross-linking takes place through that mixing.
摘要:
Provided are a tri-block copolymer and an electrolyte membrane prepared therefrom. The tri-block copolymer has a structure of polar moiety-containing copolymer block/non-polar moiety-containing copolymer block/polar moiety-containing copolymer block, or non-polar moiety-containing copolymer block/polar moiety-containing copolymer block/non-polar moiety-containing copolymer block, and is useful for an electrolyte membrane for fuel cells. The electrolyte membrane for fuel cells prepared from the tri-block copolymer exhibits superior dimensional stability and excellent fuel cell performance.
摘要:
A proton conducting polymer electrolyte comprising a proton conducting ionomer cross-linked with an amount of a copolymer additive comprising cross-linking functional groups and other functional groups (e.g. proton carriers, chelating agents, radical scavengers) shows improved durability over the ionomer alone and provides for more stable inclusion of these other functional groups. The copolymer additive comprises at least two types of metal oxide monomers, one having cross-linking functional groups and the other having the other functional groups.
摘要:
Provided herein are immobilized liquid membranes for gas separation, methods of preparing such membranes and uses thereof. In one example, the immobilized membrane includes a porous metallic host matrix and an immobilized liquid fluid (such as a silicone oil) that is immobilized within one or more pores included within the porous metallic host matrix. The immobilized liquid membrane is capable of selective permeation of one type of molecule (such as oxygen) over another type of molecule (such as water). In some examples, the selective membrane is incorporated into a device to supply oxygen from ambient air to the device for electrochemical reactions, and at the same time, to block water penetration and electrolyte loss from the device.
摘要:
A proton conductive material in which hollow inorganic fine particles that have through holes on a surface of the hollow inorganic fine particles, that are filled with an electrolyte resin. In addition, a membrane-electrode assembly which has an anode electrode provided on one surface side of a solid polymer electrolyte membrane and including an anode catalyst layer, and a cathode electrode provided on the other surface side of the solid polymer electrolyte membrane and including a cathode catalyst layer, wherein at least the anode catalyst layer from among the pair of catalyst layers includes the proton conductive material.
摘要:
Provided are a sulfonated poly(arylene ether) copolymer including a crosslinking structure and a polyelectrolyte membrane including the same. Particularly, a sulfonated poly(arylene ether) copolymer including a crosslinking structure in a polymer chain or at the terminal portion of the polymer chain, and a polyelectrolyte membrane including the same are provided. The polyelectrolyte membrane using the sulfonated poly(arylene ether) copolymer including the crosslinking structure, may have the same or better degree of a thermal stability, a mechanical stability, a chemical stability, a membrane forming capability, etc. than a commonly used polyelectrolyte membrane. In addition, the proton conductivity and the cell performance of the polyelectrolyte membrane may be remarkably improved than those of the commonly used polymer electrolyte. Further, the properties of the electrolyte membrane may be rarely changed, and a high measuring stability may be obtainable. The polyelectrolyte membrane may be used in a fuel cell or a secondary battery.
摘要:
A copolymer suitable for use in forming a solid polymer electrolyte film comprising a first monomer represented by Formula (1): wherein n is 2 to 1,000; m is 2 to 1,000; x and y are individually 1 to 100; p is 0 to 10; and q is 1 to 10, R1 is an alkyl group having 1 to 10 carbon atoms, and A is an alkyl acryloyl group an acryloyl group, alkyl acryloyl group, methacryloyl group, alkyl methacryloyl group, a vinyl group, an allyl group, a styryl group, or a combination of two or more thereof; and a second monomer chosen from a hydroxyl-substituted alkyl acrylate, a hydroxyl-substituted alkyl methacrylate, or a combination of two or more thereof. The copolymer may be used to form a solid polymer electrolyte composition comprising (i) the copolymer, (ii) a plasticizer, and (iii) a salt. The solid polymer electrolyte may be used to form a solid polymer electrolyte film, which may be suitable for use in electrochemical devices.
摘要:
The present invention relates to a novel sulfone hybrid precursor, to the synthesis method thereof, and to the uses thereof, particularly for preparing proton-exchanging electrolyte membranes as the functional hybrid charge in a host structure; for the manufacture of functional hybrid nanoparticles by sol-gel polymerization; for the use as a fluidifying agent; for the production of surface coverings through chemical grafting by means of sol-gel polymerization; for the use as a hygroscopic agent; and for the use as a bonding or structuring agent.
摘要:
A process for forming a porous nanoscale membrane is described. The process involves applying a nanoscale film to one side of a substrate, where the nanoscale film includes a semiconductor material; masking an opposite side of the substrate; etching the substrate, beginning from the masked opposite side of the substrate and continuing until a passage is formed through the substrate, thereby exposing the film on both sides thereof to form a membrane; and then simultaneously forming a plurality of randomly spaced pores in the membrane. The resulting porous nanoscale membranes, characterized by substantially smooth surfaces, high pore densities, and high aspect ratio dimensions, can be used in filtration devices, microfluidic devices, fuel cell membranes, and as electron microscopy substrates.