摘要:
A resilient anion exchange membrane including a homogeneous cross-linked ion-transferring polymer substantially filling pores and substantially covering surfaces of a porous substrate, wherein the resilient anion exchange membrane is prepared by polymerizing a composition including a quaternary ammonium cationic surfactant monomer, a crosslinking monomer including two or more ethylenic groups, a free radical initiator, and a solvent.
摘要:
Provided is a cation exchange membrane having excellent mechanical strength against folding and the like and capable of delivering stable electrolytic performance for a long time, an electrolysis vessel using the cation exchange membrane and a method for producing the cation exchange membrane. A cation exchange membrane 1 at least includes: a membrane body containing a fluorine-based polymer having an ion-exchange group; and two or more reinforcing core materials arranged approximately in parallel within the membrane body. The membrane body is provided with two or more elution holes 12 formed between the reinforcing core materials 10 adjacent to each other. In addition, assuming that a distance between the reinforcing core materials 10 adjacent to each other is represented by a, a distance between the reinforcing core materials 10 and the elution holes 12 adjacent to each other is represented by b, a distance between the elution holes 12 adjacent to each other is represented by c, and the number of the elution holes 12 formed between the reinforcing core materials 10 adjacent to each other is represented by n, then a, b, c, and n satisfying the relationship represented by the following expression (1) or expression (2) are at least present. b>a/(n+1) (1) c>a/(n+1) (2)
摘要:
Disclosed is an electrochemical device. The electrochemical device includes: (a) a composite separator including a porous substrate, a first porous coating layer coated on one surface of the porous substrate, and a second porous coating layer coated on the other surface of the porous substrate; (b) an anode disposed to face the first porous coating layer; and (c) a cathode disposed to face the second porous coating layer. The first and second porous coating layers are each independently composed of a mixture including inorganic particles and a binder polymer. The first porous coating layer is thicker than the second porous coating layer. The electrochemical device has good thermal stability and improved cycle characteristics.
摘要:
The present invention relates to a membrane electrode assembly comprising at least two electrochemically active electrodes separated by at least one polymer electrolyte membrane, the aforementioned polymer electrolyte membrane having fibrous reinforcing elements which at least partly penetrate the polymer electrolyte membrane, wherein at least some of the fibrous reinforcing elements have functional groups which have a covalent chemical bond between the fibers and the polymer of the polymer electrolyte membrane.The membrane electrode assembly is suitable for applications in fuel cells, especially in high-temperature polymer electrolyte fuel cells.
摘要:
A water vapor transfer unit with separator plates and a method of making the same. In such an assembly, an ionomer coating that facilitates moisture transfer from a moisture-rich flowpath to a moisture-deficient flowpath and an underlying separator may both be prepared from continuous, roll-based methods. The ionomer may be applied to a separator assembly as the last processing step such that the handling of the fragile membrane is kept to a minimum.
摘要:
Disclosed is a composite electrolyte membrane for a fuel cell. The composite electrolyte membrane includes a polybenzimidazole-based polymer and a metal-grafted porous structure. The composite electrolyte membrane is doped with phosphoric acid. The metal-containing porous structure is present in an amount of 0.1 to 30% by weight, based on the weight of the polymer. The presence of the metal-containing porous structure allows the fuel cell electrolyte membrane to have excellent thermal properties and high proton conductivity.
摘要:
A proton conductive material in which hollow inorganic fine particles that have through holes on a surface of the hollow inorganic fine particles, that are filled with an electrolyte resin. In addition, a membrane-electrode assembly which has an anode electrode provided on one surface side of a solid polymer electrolyte membrane and including an anode catalyst layer, and a cathode electrode provided on the other surface side of the solid polymer electrolyte membrane and including a cathode catalyst layer, wherein at least the anode catalyst layer from among the pair of catalyst layers includes the proton conductive material.
摘要:
The present invention provides a laminated film and a non-aqueous electrolyte secondary battery. The laminated film is a laminated film in which a porous film having a shutdown function, a heat resistant porous layer consisting of an inorganic filler and a binder, and a protective porous layer are stacked on each other in this order. The non-aqueous electrolyte secondary battery is a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a separator located between the positive electrode and the negative electrode, and an electrolyte, wherein the separator is the above-mentioned laminated film.
摘要:
To provide a proton conducting material with which an electrode and a fuel cell capable of functioning in a stable manner even without humidification in a temperature range from room temperature to about 200° C. can be achieved. The proton conducting material includes a porous structural material having pores and a heterocyclic organic compound having proton conductivity. The organic compound contained inside the pores has a crystallite size D of 50 nm or less.
摘要:
The present invention relates to a membrane electrode assembly comprising at least two electrochemically active electrodes separated by at least one polymer electrolyte membrane, the aforementioned polymer electrolyte membrane having fibrous reinforcing elements which at least partly penetrate the polymer electrolyte membrane, wherein at least some of the fibrous reinforcing elements have functional groups which have a covalent chemical bond between the fibers and the polymer of the polymer electrolyte membrane.The membrane electrode assembly is suitable for applications in fuel cells, especially in high-temperature polymer electrolyte fuel cells.