Abstract:
A method of making a water vapor transport membrane is described. The method can include providing two sheets, each sheet comprising a support layer with an ionomer layer thereon; applying a solvent to at least one sheet; and contacting the ionomer layers of the two sheets to form a composite membrane comprising a composite ionomer layer between the two support layers. A composite membrane is also described.
Abstract:
A water vapor transfer unit with separator plates and a method of making the same. In such an assembly, an ionomer coating that facilitates moisture transfer from a moisture-rich flowpath to a moisture-deficient flowpath and an underlying separator may both be prepared from continuous, roll-based methods. The ionomer may be applied to a separator assembly as the last processing step such that the handling of the fragile membrane is kept to a minimum.
Abstract:
A method of making a water vapor transport membrane is described. The method can include providing two sheets, each sheet comprising a support layer with an ionomer layer thereon; applying a solvent to at least one sheet; and contacting the ionomer layers of the two sheets to form a composite membrane comprising a composite ionomer layer between the two support layers. A composite membrane is also described.
Abstract:
A method for improving the chemical stability of a vapor transfer membrane includes providing a vapor transfer membrane including an ionomer layer having protogenic groups and then annealing the vapor transfer membrane at a temperature greater than about 100° C. Advantageously, the performance and durability of WVT membranes are markedly improved by thermally annealing the membranes.
Abstract:
A water vapor transfer unit with separator plates and a method of making the same. In such an assembly, an ionomer coating that facilitates moisture transfer from a moisture-rich flowpath to a moisture-deficient flowpath and an underlying separator may both be prepared from continuous, roll-based methods. The ionomer may be applied to a separator assembly as the last processing step such that the handling of the fragile membrane is kept to a minimum.
Abstract:
A membrane humidifier assembly includes a first flow field plate adapted to facilitate flow of a first gas thereto and a second flow field plate adapted to facilitate flow of a second gas thereto. A polymeric membrane is disposed between the first and second flow fields and adapted to permit transfer of water from the first flow field plate to the second flow field plate. The polymeric membrane includes a polymer having perfluorocyclobutyl groups and a pendant side chain having a protogenic group.
Abstract:
A fuel cell includes a first flow field plate defining at least one flow field channel. A cathode catalyst layer is disposed over at least a portion of the first flow field plate. A polymeric ion conducting membrane is disposed over cathode catalyst layer. An anode catalyst layer is disposed over the polymeric ion conducting membrane. Finally, a second flow field plate defining at least one flow field channel is disposed over the anode catalyst layer. The polymeric ion conducting membrane extends beyond the cathode catalyst layer and the anode catalyst layer such that the fuel cell has at least one peripheral region with the polymeric catalyst layer interposed between first flow field plate and the second flow field plate without the cathode catalyst layer and the anode catalyst layer.
Abstract:
A membrane humidifier assembly includes a first flow field plate adapted to facilitate flow of a first gas thereto and a second flow field plate adapted to facilitate flow of a second gas thereto. A polymeric membrane is disposed between the first and second flow fields and adapted to permit transfer of water from the first flow field plate to the second flow field plate. The polymeric membrane includes a polymer having perfluorocyclobutyl groups.
Abstract:
A fuel cell includes a first flow field plate defining at least one flow field channel. A cathode catalyst layer is disposed over at least a portion of the first flow field plate. A polymeric ion conducting membrane is disposed over cathode catalyst layer. An anode catalyst layer is disposed over the polymeric ion conducting membrane. Finally, a second flow field plate defining at least one flow field channel is disposed over the anode catalyst layer. The polymeric ion conducting membrane extends beyond the cathode catalyst layer and the anode catalyst layer such that the fuel cell has at least one peripheral region with the polymeric catalyst layer interposed between first flow field plate and the second flow field plate without the cathode catalyst layer and the anode catalyst layer.