Abstract:
A semiconductor device and method of formation are provided herein. A semiconductor device includes a fin having a doped region, in some embodiments. The semiconductor device includes a gate over a channel portion of the fin. The gate including a gate electrode over a gate dielectric between a first sidewall spacer and a second sidewall spacer. The first sidewall spacer includes an initial first sidewall spacer over a first portion of a dielectric material. The second sidewall spacer includes an initial second sidewall spacer over a second portion of the dielectric material.
Abstract:
A semiconductor device and method of formation are provided herein. A semiconductor device includes a fin having a doped region, in some embodiments. The semiconductor device includes a gate over a channel portion of the fin. The gate including a gate electrode over a gate dielectric between a first sidewall spacer and a second sidewall spacer. The first sidewall spacer includes an initial first sidewall spacer over a first portion of a dielectric material. The second sidewall spacer includes an initial second sidewall spacer over a second portion of the dielectric material.
Abstract:
A semiconductor device and method of formation are provided herein. A semiconductor device includes a fin having a first wall extending along a first plane, the fin including a doped region defining a first furrow on a first side of the first plane. A dielectric is disposed within the first furrow, such that the dielectric is in contact with the first furrow between a first end of the dielectric and a second end of the dielectric. The first end is separated a first distance from the first plane. The dielectric disposed within the furrow increases the isolation of a channel portion of adjacent fins, and thus decreases current leakage of a FinFet, as compared to a FinFet including fins that do not include a dielectric disposed within a furrow.
Abstract:
A semiconductor device includes a first type region including a first conductivity type. The semiconductor device includes a second type region including a second conductivity type. The semiconductor device includes a channel region extending between the first type region and the second type region. The semiconductor device includes a gate region surrounding the channel region. The gate region includes a gate electrode. A gate electrode length of the gate electrode is less than about 10 nm. A method of forming a semiconductor device is provided.
Abstract:
A fin-type field effect transistor includes a first fin including a first source, a first drain, and a first channel. The fin-type field effect transistor includes a second fin including a second source, a second drain, and a second channel. The fin-type field effect transistor includes a first semiconductor region under the first fin and a second semiconductor region under the second fin. A first reacted region is adjacent the first semiconductor region while a second reacted region is adjacent the second semiconductor region. The first reacted region has a first dimension causing a first strain in the first channel. The second reacted region has a second dimension causing a second strain in the second channel. The first strain and second strain are substantially equal to one another. A method of fabricating an example fin-type field effect transistor is provided.