METHOD OF DETERMINING AN ENERGY WIDTH OF A CHARGED PARTICLE BEAM

    公开(公告)号:US20220148849A1

    公开(公告)日:2022-05-12

    申请号:US17523228

    申请日:2021-11-10

    Applicant: FEI Company

    Abstract: The disclosure relates to a method of determining an energy width of a charged particle beam, comprising the steps of providing a charged particle beam, directing said beam towards a specimen, and forming an energy-dispersed beam from a flux of charged particles transmitted through the specimen. As defined herein, the method comprises the steps of providing a slit element in a slit plane, and using said slit element for blocking a part of said energy-dispersed beam, as well as the step of modifying said energy-dispersed beam at the location of said slit plane in such a way that said energy dispersed beam is partially blocked at said slit element. The unblocked part of said energy-dispersed beam is imaged and an intensity gradient of said imaged energy-dispersed beam is determined, with which the energy width of the charged particle beam can be determined.

    Sixth-order and above corrected STEM multipole correctors

    公开(公告)号:US11114271B2

    公开(公告)日:2021-09-07

    申请号:US16692851

    申请日:2019-11-22

    Applicant: FEI Company

    Abstract: Correctors for correcting axial aberrations of a particle-optical lens in a charged particle microscope system, according to the present disclosure include a first primary multipole that generates a first primary multipole field when a first excitation is applied to the first primary multipole, and a second primary multipole that generates a second primary multipole field when a second excitation is applied to the second primary multipole. The first primary multipole is not imaged onto the second primary multipole such that a combination fourth-order aberration is created. The correctors further include a secondary multipole for correcting the fourth-order aberration and the sixth-order aberration. Such correctors may further include a tertiary multipole for correcting an eighth-order aberration.

    Transmission charged particle microscope with improved EELS/EFTEM module

    公开(公告)号:US10559448B2

    公开(公告)日:2020-02-11

    申请号:US16210531

    申请日:2018-12-05

    Applicant: FEI Company

    Abstract: A method of using a Transmission Charged Particle Microscope comprising: A specimen holder, for holding a specimen; A source, for producing a beam of charged particles; An illuminator, for directing said beam so as to irradiate the specimen; An imaging system, for receiving a flux of charged particles transmitted through the specimen and directing it onto a sensing device; A controller, for controlling at least some operational aspects of the microscope, in which method the sensing device is chosen to be an EELS/EFTEM module comprising: An entrance plane; An image plane, where in EELS mode an EELS spectrum is formed and in EFTEM mode an EFTEM image is formed; A slit plane between said entrance plane and image plane, where in EFTEM mode an energy dispersed focus is formed; A dispersing device, between said entrance plane and slit plane, for dispersing an incoming beam into an energy-dispersed beam with an associated dispersion direction; A first series of quadrupoles between said dispersing device and slit plane; A second series of quadrupoles between said slit plane and image plane, which dispersing device and quadrupoles are arranged along an optical axis, whereby, for a Cartesian coordinate system (X,Y,Z) in which said optical axis is disposed along Z, said dispersion direction is defined as being parallel to X, comprising the following steps: In said first quadrupole series, exciting one or more quadrupoles so as to deflect an off-axis non-dispersive YZ ray leaving said dispersing device onto a path paraxial to said optical axis from said slit plane to said image plane; In said second quadrupole series, exciting either: (a) A single quadrupole; or (b) A pair of adjacent quadrupoles, so as to focus said energy-dispersed beam onto said image plane.

    Transmission charged particle microscope with imaging beam rotation

    公开(公告)号:US10224174B1

    公开(公告)日:2019-03-05

    申请号:US15803642

    申请日:2017-11-03

    Applicant: FEI Company

    Abstract: A method, includes, with an illumination system, directing a first charged particle beam along a particle-optical axis to a specimen position, with an imaging system, receiving a second charged particle beam from the specimen position and directing the second charged particle beam to a detector, recording a first output of the detector, varying an excitation of an optical element of the imaging system with a controller so as to rotate the second charged particle beam at the detector through a yaw angle about the particle-optical axis, and recording a second output of the detector at the yaw angle.

    Aberration measurement in a charged particle microscope

    公开(公告)号:US10157727B2

    公开(公告)日:2018-12-18

    申请号:US15448445

    申请日:2017-03-02

    Applicant: FEI Company

    Abstract: A method of operating a charged particle microscope comprising the following steps: Providing a specimen on a specimen holder; Using a source to produce a beam of charged particles; Passing said beam through an illuminator comprising: A source lens, with an associated particle-optical axis; A condenser aperture, which is disposed between the source lens and specimen and is configured to define a footprint of said beam upon the specimen; Irradiating the specimen with the beam emerging from said illuminator; Using a detector to detect radiation emanating from the specimen in response to said irradiation, and producing an associated image, specifically comprising the following steps: Choosing a set of emission angles from said source; For each emission angle in said set, selecting a corresponding sub-beam that emits from the source at that emission angle, and storing a test image formed by that sub-beam, thereby compiling a set of test images corresponding to said set of emission angles; Analyzing said set of test images to evaluate illuminator aberrations generated prior to said condenser aperture.

    ABERRATION MEASUREMENT IN A CHARGED PARTICLE MICROSCOPE

    公开(公告)号:US20180254168A1

    公开(公告)日:2018-09-06

    申请号:US15448445

    申请日:2017-03-02

    Applicant: FEI Company

    Abstract: A method of operating a charged particle microscope comprising the following steps: Providing a specimen on a specimen holder; Using a source to produce a beam of charged particles; Passing said beam through an illuminator comprising: A source lens, with an associated particle-optical axis; A condenser aperture, which is disposed between the source lens and specimen and is configured to define a footprint of said beam upon the specimen; Irradiating the specimen with the beam emerging from said illuminator; Using a detector to detect radiation emanating from the specimen in response to said irradiation, and producing an associated image, specifically comprising the following steps: Choosing a set of emission angles from said source; For each emission angle in said set, selecting a corresponding sub-beam that emits from the source at that emission angle, and storing a test image formed by that sub-beam, thereby compiling a set of test images corresponding to said set of emission angles; Analyzing said set of test images to evaluate illuminator aberrations generated prior to said condenser aperture.

    EMISSION NOISE CORRECTION OF A CHARGED PARTICLE SOURCE

    公开(公告)号:US20180233322A1

    公开(公告)日:2018-08-16

    申请号:US15435018

    申请日:2017-02-16

    Applicant: FEI Company

    Abstract: A method of operating a charged particle microscope comprising the following steps: Providing a specimen on a specimen holder; Using a source to produce a beam of charged particles that is subject to beam current fluctuations; Employing a beam current sensor, located between said source and specimen holder, to intercept a part of the beam and produce an intercept signal proportional to a current of the intercepted part of the beam, the beam current sensor comprising a hole arranged to pass a beam probe with an associated probe current; Scanning said probe over the specimen, thereby irradiating the specimen with a specimen current, with a dwell time associated with each scanned location on the specimen; Using a detector to detect radiation emanating from the specimen in response to irradiation by said probe, and producing an associated detector signal; Using said intercept signal as input to a compensator to suppress an effect of said current fluctuations in said detector signal, wherein: The beam current sensor is configured as a semiconductor device with a sensing layer that is oriented toward the source, in which: Each charged particle of said intercepted part of the beam generates electron/hole pairs in said sensing layer; Generated electrons are drawn to an anode of the semiconductor device; Generated holes are drawn to a cathode of the semiconductor device, thereby producing said intercept signal.

Patent Agency Ranking