Abstract:
Embodiments of the disclosure relate to an improved electrostatic chuck for use in a processing chamber to fabricate semiconductor devices. In one embodiment, a processing chamber includes a chamber body having a processing volume defined therein and an electrostatic chuck disposed within the processing volume. The electrostatic chuck includes a support surface with a plurality of mesas located thereon, one or more electrodes disposed within the electrostatic chuck, and a seasoning layer deposited on the support surface over the plurality of mesas. The support surface is made from an aluminum containing material. The one or more electrodes are configured to form electrostatic charges to electrostatically secure a substrate to the support surface. The seasoning layer is configured to provide cushioning support to the substrate when the substrate is electrostatically secured to the support surface.
Abstract:
Techniques are disclosed for methods and apparatuses of an electrostatic chuck suitable for operating at high operating temperatures. In one example, a substrate support assembly is provided. The substrate support assembly includes a substantially disk-shaped ceramic body having an upper surface, a cylindrical sidewall, and a lower surface. The upper surface is configured to support a substrate thereon for processing the substrate in a vacuum processing chamber. The cylindrical sidewall defines an outer diameter of the ceramic body. The lower surface is disposed opposite the upper surface. An electrode is disposed in the ceramic body. A circuit is electrically connected to the electrode. The circuit includes a DC chucking circuit, a first RF drive circuit, and a second RF dive circuit. The DC chucking circuit, the first RF drive circuit and the second RF drive circuit are electrically coupled with the electrode.
Abstract:
Implementations disclosed herein describe a bevel etch apparatus within a loadlock bevel etch chamber and methods of using the same. The bevel etch apparatus has a mask assembly within the loadlock bevel etch chamber. During an etch process, the mask assembly delivers a gas flow to control bevel etch without the use of a shadow frame. As such, the edge exclusion at the bevel edge can be reduced, thus increasing product yield.
Abstract:
Embodiments of the invention generally relate to methods of dry stripping boron-carbon films. In one embodiment, alternating plasmas of hydrogen and oxygen are used to remove a boron-carbon film. In another embodiment, co-flowed oxygen and hydrogen plasma is used to remove a boron-carbon containing film. A nitrous oxide plasma may be used in addition to or as an alternative to either of the above oxygen plasmas. In another embodiment, a plasma generated from water vapor is used to remove a boron-carbon film. The boron-carbon removal processes may also include an optional polymer removal process prior to removal of the boron-carbon films. The polymer removal process includes exposing the boron-carbon film to NF3 to remove from the surface of the boron-carbon film any carbon-based polymers generated during a substrate etching process.
Abstract:
Embodiments of the present disclosure provide an electrostatic chuck for maintaining a flatness of a substrate being processed in a plasma reactor at high temperatures. In one embodiment, the electrostatic chuck comprises a chuck body coupled to a support stem, the chuck body having a substrate supporting surface, and the chuck body has a volume resistivity value of about 1×107 ohm-cm to about 1×1015 ohm-cm in a temperature of about 250° C. to about 700° C., and an electrode embedded in the body, the electrode is coupled to a power supply. In one example, the chuck body is composed of an aluminum nitride material which has been observed to be able to optimize chucking performance around 600° C. or above during a deposition or etch process, or any other process that employ both high operating temperature and substrate clamping features.
Abstract:
Methods for forming an amorphous carbon layer with desired film mechanical strength low film stress as well as optical film properties are provided. In one embodiment, a method of forming an amorphous carbon layer includes forming a plasma of a deposition gas mixture including a hydrocarbon gas supplied in a processing chamber by application of a RF source power, applying a low frequency RF bias power and a high frequency RF bias power to a first electrode disposed in the processing chamber, controlling a power ratio of the high frequency to the low frequency RF bias power, and forming an amorphous carbon layer on a substrate disposed in the processing chamber.
Abstract:
Methods for cleaning a processing chamber to remove amorphous carbon containing residuals from the processing chamber are provided. The cleaning process utilizes a low frequency RF bias power during the cleaning process. In one embodiment, a method of cleaning a processing chamber includes supplying a cleaning gas mixture into a processing chamber, applying a RF bias power of about 2 MHz or lower to a substrate support assembly disposed in the processing chamber to form a plasma in the cleaning gas mixture in the processing chamber, and removing deposition residuals from the processing chamber.
Abstract:
Methods for forming a hydrogen implanted amorphous carbon layer with desired film mechanical strength as well as optical film properties are provided. In one embodiment, a method of a hydrogen implanted amorphous carbon layer includes providing a substrate having a material layer disposed thereon, forming an amorphous carbon layer on the material layer, and ion implanting hydrogen ions from a hydrogen containing gas into the amorphous carbon layer to form a hydrogen implanted amorphous carbon layer.