Abstract:
Embodiments described herein relate to a faceplate for improving film uniformity. A semiconductor processing apparatus includes a pedestal, an edge ring and a faceplate having distinct regions with differing hole densities. The faceplate has an inner region and an outer region which surrounds the inner region. The inner region has a greater density of holes formed therethrough when compared to the outer region. The inner region is sized to correspond with a substrate being processed while the outer region is sized to correspond with the edge ring.
Abstract:
Embodiments disclosed herein generally relate to a plasma processing system. The plasma processing system includes a processing chamber, a chamber seasoning system, and a remote plasma cleaning system. The processing chamber has a chamber body defining a processing region and a plasma field. The chamber seasoning system is coupled to the processing chamber. The chamber seasoning system is configured to season the processing region and the plasma field. The remote plasma cleaning system is in communication with the processing chamber. The remote plasma cleaning system is configured to clean the processing region and the plasma field.
Abstract:
Embodiments disclosed herein generally include methods for forming porous low k dielectric films. In one embodiment, a method of forming a porous low k dielectric film on a substrate using PECVD and in situ radical curing in a processing chamber is disclosed. The method includes introducing radicals into a processing region of the processing chamber, introducing a gas mixture into the processing region of the processing chamber, forming a plasma in the processing region and depositing the porous low k dielectric film on the substrate.
Abstract:
Embodiments of the present invention generally relate to the fabrication of integrated circuits and particularly to the deposition of a boron containing amorphous carbon layer on a semiconductor substrate. In one embodiment, a boron-containing amorphous carbon film is disclosed. The boron-containing amorphous carbon film comprises from about 10 to 60 atomic percentage of boron, from about 20 to about 50 atomic percentage of carbon, and from about 10 to about 30 atomic percentage of hydrogen.
Abstract:
Embodiments herein provide for oxygen based treatment of low-k dielectric layers deposited using a flowable chemical vapor deposition (FCVD) process. Oxygen based treatment of the FCVD deposited low-k dielectric layers desirably increases the Ebd to capacitance and reliability of the devices while removing voids. Embodiments include methods and apparatus for making a semiconductor device including: etching a metal layer disposed atop a substrate to form one or more metal lines having a top surface, a first side, and a second side; depositing a passivation layer atop the top surface, the first side, and the second side under conditions sufficient to reduce or eliminate oxygen contact with the one or more metal lines; depositing a flowable layer of low-k dielectric material atop the passivation layer in a thickness sufficient to cover the one or more metal lines; and contacting the flowable layer of low-k dielectric material with oxygen under conditions sufficient to anneal and increase a density of the low-k dielectric material
Abstract:
A substrate processing method includes creating a mask on a top surface of a workpiece. A first portion of a gap fill material is overlaid by the mask and a second portion of the gap fill material is exposed through an opening in the mask. The method further includes exposing the workpiece to a plasma. The method further includes performing a first etching of the first portion of the gap fill material to create a first cavity while the second portion of the gap fill material remains in place, depositing a first metal-containing substance in the first cavity, performing a second etching of the second portion of the gap fill material to create a second cavity while the first metal-containing substance remains in place, and depositing a second metal-containing substance in the second cavity.
Abstract:
A method of post-treating a dielectric film formed on a surface of a substrate includes positioning a substrate having a dielectric film formed thereon in a processing chamber and exposing the dielectric film to microwave radiation in the processing chamber at a frequency between 5 GHz and 7 GHz.
Abstract:
A method of processing a substrate includes positioning the substrate within a processing zone of a processing chamber and removing an oxide layer from a surface of the substrate by introducing first radicals into the processing zone. The method further includes, after removing the oxide layer, introducing at least one first precursor gas into the processing zone and depositing at least one dielectric layer onto the surface by exposing the at least one first precursor gas to second radicals. After positioning the substrate within the processing zone, the substrate is not removed from the processing chamber until each of removing the oxide layer and depositing the at least one dielectric layer is performed.
Abstract:
Embodiments described herein provide a method of forming a silicon-and-oxygen-containing layer having covalent Si—O—Si bonds by cross-linking terminal silanol groups. The method includes positioning a substrate in a chamber. The substrate has one or more trenches including a width of 10 nanometers (nm) or less, and an aspect ratio of 2:1 or greater. The aspect ratio is defined by a ratio of a depth to the width of the one or more trenches. A silicon-and-oxygen-containing layer is disposed over the one or more trenches. The silicon-and-oxygen-containing layer has terminal silanol groups. The substrate is heated, and the silicon-and-oxygen-containing layer is exposed to an ammonia or amine group-containing precursor distributed across a process volume.
Abstract:
Embodiments of the invention generally relate to methods of dry stripping boron-carbon films. In one embodiment, alternating plasmas of hydrogen and oxygen are used to remove a boron-carbon film. In another embodiment, co-flowed oxygen and hydrogen plasma is used to remove a boron-carbon containing film. A nitrous oxide plasma may be used in addition to or as an alternative to either of the above oxygen plasmas. In another embodiment, a plasma generated from water vapor is used to remove a boron-carbon film. The boron-carbon removal processes may also include an optional polymer removal process prior to removal of the boron-carbon films. The polymer removal process includes exposing the boron-carbon film to NF3 to remove from the surface of the boron-carbon film any carbon-based polymers generated during a substrate etching process.