Abstract:
Polycrystalline silicon-germanium alloy is grown on a glass substrate through a chemical vapor deposition under the conditions where the substrate temperature ranges from 350 degrees to 450 degrees in centigrade, the ratio between gas flow rate of Si.sub.2 H.sub.6 and the gas flow rate of GeF.sub.4 ranges from 20:0.9 to 40:0.9 and the dilution gas is selected from the group consisting of helium, argon, nitrogen and hydrogen, and the composition ratio of silicon of the polycrystalline silicon-germanium is equal to or greater than 80 percent so that the carrier mobility is drastically improved.
Abstract:
A photo FET device having a large area backside optical energy reception surface is disclosed. The photo FET device is fabricated in the source gate and drain upward configuration and then inverted onto a new permanent substrate member and an original surrogate substrate member removed in order to expose the active area backside optical energy reception surface. Electrical characteristics including curve tracer electrical data originating in both dark and illuminated devices and devices of varying size and both depletion mode and enhancement mode operation are also disclosed. Fabrication of the device from gallium arsenide semiconductor material and utilization for infrared energy transducing in a number of differing electronic applications are also disclosed.
Abstract:
Disclosed herein is a process for fabricating a thin-film semiconductor device which includes (1) a step of etching a silicon film by wet etching or gas etching, the former employing a liquid containing hydrazine or ethylene diamine, the latter employing chlorine fluoride, thereby forming an island-like silicon semiconductor region having inclined edges, and (2) a step of forming thereon a gate insulating film by plasma-free process such as heated CVD. The process yields the island-like silicon region and gate insulating film completely free from plasma-induced damage. This reduces the leakage current between the source and drain (which is due to plasma-induced damage) and prevents the degradation of characteristic properties.
Abstract:
A neutron radiation detector is described. A semiconductor material is populated with helium three (.sup.3 He) atoms to increase its overall neutron capture efficiency. Upon capture of a neutron by a .sup.3 He atom, a tritium ion and a proton are generated with energies of 0.191 and 0.573 MeV, respectively. These energies are deposited in the semiconductor material creating electron-hole pairs. The electron-hole pairs are withdrawn from the material by the application of an electric field and are collected as charges at the terminals. The associated circuitry processes the charges into pulses with these being counted and their sizes measured. The results are recorded and displayed. The number of pulses are a measure of the number of neutrons absorbed in the detector and of the neutron flux of interest. In many instances the detector can also be used to detect and display non-neutron type radiation or simultaneously neutron and non-neutron forms of radiative activity.
Abstract:
The method for fabricating a semiconductor device disclosed is one in which an insulation film is formed on a metal interconnect by an Electron Cyclotron Resonance Chemical Vapor Deposition (ECR CVD) process capable of applying a radio frequency bias to a substrate, a surface of the insulation film is planarized by a chemical-mechanical polishing (CMP) process, and a surface of the insulation film is cleaned. The ECR CVD process capable of applying a radio frequency bias to a substrate may be a radio frequency bias plasma CVD process or a bias sputtering process. The cleaning of the surface of the insulation film may use a hydrogen fluoride solution. It is easy to control processes without increasing the number of process steps and a high degree of planarization can be realized.
Abstract:
Disclosed are methods of forming resistors and diodes from semiconductive material, and static random access memory (SRAM) cells incorporating resistors, and to integrated circuitry incorporating resistors and diodes. A node to which electrical connection is to be made is provided. An electrically insulative layer is provided outwardly of the node. An opening is provided in the electrically insulative layer over the node. The opening is filled with semiconductive material which depending on configuration serves as one or both of a vertically elongated diode and resistor.
Abstract:
A method of producing sheets of crystalline material is disclosed, as well as devices employing such sheets. In the method, a growth mask is formed upon a substrate and crystalline material is grown at areas of the substrate exposed through the mask and laterally over the surface of the mask to form a sheet of crystalline material. This sheet is optionally separated so that the substrate can be reused. The method has particular importance in forming sheets of crystalline semiconductor material for use in solid state devices.
Abstract:
A dual dielectric structure is employed in the fabrication of thin film field effect transistors in a matrix addressed liquid display to provide improved transistor device characteristics and also to provide both electrical and chemical isolation for material employed in the gate metallization layer. In particular, the use of a layer of silicon oxide over the gate metallization layer is not only consistent with providing the desired electrical and chemical isolation, but also with providing redundant gate metallization material to be employed beneath source or data lines for electrical circuit redundancy. Gate line redundancy is also possible. The electrical and chemical isolation provided by the dual dielectric layer reduces the possibilities of short circuits occurring in the display. The absence of short circuits together with the improved redundancy characteristics significantly increase manufacturing yield. As display sizes increase, the yield problem becomes more and more significant, generally growing as the square of the diagonal measurement of the screen. The structure in the present invention also significantly reduces gate leakage current. In the process and structure of the present invention, gate electrode material is separated from semiconductor material by the aforementioned dual dielectric, typically comprising layers of silicon oxide disposed beneath a layer of silicon nitride which is, in turn, disposed beneath the active amorphous silicon semiconductor material.
Abstract:
A MOCVD process for depositing an arsenic-containing film or a phosphorous-containing film utilizing a diprimary phosphine or arsine or an unsaturated hydrocarbon phosphine or arsine.
Abstract:
A solid-state semiconductor photonic device is prepared by a photoelectrochemical deposition method. The device contains a highly conductive coating material including one or more metals and/or semiconductors on a substrate containing a semiconductor material. The device is utilized in photodetectors, including radiometric detection cells, in conversions of electrical energy to optical radiation, such as light-emitting-diodes and diodes lasers, and in photovoltaic cells, including Schottky-barrier cells.