摘要:
A method for bonding at low or room temperature includes steps of surface cleaning and activation by cleaning or etching. The method may also include removing by-products of interface polymerization to prevent a reverse polymerization reaction to allow room temperature chemical bonding of materials such as silicon, silicon nitride and SiO2. The surfaces to be bonded are polished to a high degree of smoothness and planarity. VSE may use reactive ion etching or wet etching to slightly etch the surfaces being bonded. The surface roughness and planarity are not degraded and may be enhanced by the VSE process. The etched surfaces may be rinsed in solutions such as ammonium hydroxide or ammonium fluoride to promote the formation of desired bonding species on the surfaces.
摘要:
A method may include the steps of directly bonding a semiconductor device having a substrate to an element; and removing a portion of the substrate to expose a remaining portion of the semiconductor device after bonding. The element may include one of a substrate used for thermal spreading, impedance matching or for RF isolation, an antenna, and a matching network comprised of passive elements. A second thermal spreading substrate may be bonded to the remaining portion of the semiconductor device. Interconnections may be made through the first or second substrates. The method may also include bonding a plurality of semiconductor devices to an element, and the element may have recesses in which the semiconductor devices are disposed.
摘要:
A method for bonding at low or room temperature includes steps of surface cleaning and activation by cleaning or etching. The method may also include removing by-products of interface polymerization to prevent a reverse polymerization reaction to allow room temperature chemical bonding of materials such as silicon, silicon nitride and SiO2. The surfaces to be bonded are polished to a high degree of smoothness and planarity. VSE may use reactive ion etching or wet etching to slightly etch the surfaces being bonded. The surface roughness and planarity are not degraded and may be enhanced by the VSE process. The etched surfaces may be rinsed in solutions such as ammonium hydroxide or ammonium fluoride to promote the formation of desired bonding species on the surfaces.
摘要:
Materials, and methods that use such materials, that are useful for forming chip stacks, chip and wafer bonding and wafer thinning are disclosed. Such methods and materials provide strong bonds while also being readily removed with little or no residues.
摘要:
A method for bonding at low or room temperature includes steps of surface cleaning and activation by cleaning or etching. One etching process The method may also include removing by-products of interface polymerization to prevent a reverse polymerization reaction to allow room temperature chemical bonding of materials such as silicon, silicon nitride and SiO2. The surfaces to be bonded are polished to a high degree of smoothness and planarity. VSE may use reactive ion etching or wet etching to slightly etch the surfaces being bonded. The surface roughness and planarity are not degraded and may be enhanced by the VSE process. The etched surfaces may be rinsed in solutions such as ammonium hydroxide or ammonium fluoride to promote the formation of desired bonding species on the surfaces.
摘要:
A method for bonding at low or room temperature includes steps of surface cleaning and activation by cleaning or etching. One etching process The method may also include removing by-products of interface polymerization to prevent a reverse polymerization reaction to allow room temperature chemical bonding of materials such as silicon, silicon nitride and SiO2. The surfaces to be bonded are polished to a high degree of smoothness and planarity. VSE may use reactive ion etching or wet etching to slightly etch the surfaces being bonded. The surface roughness and planarity are not degraded and may be enhanced by the VSE process. The etched surfaces may be rinsed in solutions such as ammonium hydroxide or ammonium fluoride to promote the formation of desired bonding species on the surfaces.
摘要:
A device integration method and integrated device. The method includes the steps of polishing surfaces of first and second workpieces each to a surface roughness of about 5–10 Å. The polished surfaces of the first and second workpieces are bonded together. A surface of a third workpiece is polished to the surface roughness. The surface of the third workpiece is bonded to the joined first and second workpieces. The first, second and third workpieces may each be a semiconductor device having a thin material formed on one surface, preferably in wafer form. The thin materials are polished to the desired surface roughness and then bonded together. The thin materials may each have a thickness of approximately 1–10 times the surface non-planarity of the material on which they are formed. Any number of devices may be bonded together, and the devices may be different types of devices or different technologies.
摘要:
A device integration method and integrated device. The method includes the steps of polishing surfaces of first and second workpieces each to a surface roughness of about 5-10 null. The polished surfaces of the first and second workpieces are bonded together. A surface of a third workpiece is polished to the surface roughness. The surface of the third workpiece is bonded to the joined first and second workpieces. The first, second and third workpieces may each be a semiconductor device having a thin material formed on one surface, preferably in wafer form. The thin materials are polished to the desired surface roughness and then bonded together. The thin materials may each have a thickness of approximately 1-10 times the surface non-planarity of the material on which they are formed. Any number of devices may be bonded together, and the devices may be different types of devices or different technologies.
摘要:
A device integration method and integrated device. The method may include the steps of directly bonding a semiconductor device having a substrate to an element; and removing a portion of the substrate to expose a remaining portion of the semiconductor device after bonding. The element may include one of a substrate used for thermal spreading, impedance matching or for RF isolation, an antenna, and a matching network comprised of passive elements. A second thermal spreading substrate may be bonded to the remaining portion of the semiconductor device. Interconnections may be made through the first or second substrates. The method may also include bonding a plurality of semiconductor devices to an element, and the element may have recesses in which the semiconductor devices are disposed. A conductor array having a plurality of contact structures may be formed on an exposed surface of the semiconductor device, vias may be formed through the semiconductor device to device regions, and interconnection may be formed between said device regions and said contact structures.
摘要:
Wafer bonding edge protection techniques are provided. In one aspect, a method of forming Cu interconnects in a wafer includes: forming a dielectric layer on the wafer; forming a first mask on the dielectric layer; patterning the first mask with a footprint/location of the Cu interconnects, wherein the patterning of the first mask is performed over an entire surface of the wafer; forming a second mask on the first mask, wherein the second mask covers a portion of the patterned first mask at an edge region of the wafer; patterning trenches in the dielectric layer through the first mask and the second mask, wherein the second mask blocks formation of the trenches at the edge region of the wafer and thereby provides edge protection during patterning of the trenches; and forming the Cu interconnects in the trenches. A wafer bonding method and interconnect structure are also provided.