Abstract:
A photoluminescence sensor for detecting a photoluminescent light from a toluminescent material is disclosed. In a preferred embodiment the photoluminescence sensor comprises: a source of light; a concave mirror having at least one perforation for passing the source light through the at least one perforation; an optical waveguide having proximal and distal ends with the photoluminescent material being disposed at the distal end; an objective for directing the source light into the proximal end of the waveguide; an objective for receiving photoluminescent light and for focusing the photoluminescent light onto the perforated concave mirror; a liquid filter for passing the photoluminescent light reflected from the perforated concave mirror to a detector to detect the photoluminescent light. The sensor can also include a chopper disposed at the output end of the objective for modulating the light source at a select frequency and a lock-in amplifier tuned to measure the output from the detector at the select frequency.
Abstract:
A flaw detector for optically transmissive surfaces having a first light collector above the surface and a second light collector below the surface. A scanning light beam is directed into the first light collector through a beam entrance aperture and only light scattered from the surface is collected. Light specularly reflected from the surface exits the collector through the beam entrance aperture. Similarly, light passing through the surface enters the second collector, but the axial beam component is dumped through an opening in the second collector, while only diffracted light is collected. Preferably, two-stage light collectors are used with the first stage admitting the beam and generating a scattered or diffracted beam component, with the second stage admitting the scattered or diffracted beam component and integrating the component over a collection surface and sampling the integrated portion at a photoelectric detector. An electrical output signal from the detector may be displayed.
Abstract:
A scanning device adapted to be associated with a radiant energy measuring meter such as a luminance photometer to provide precision linear or angular scanning across an area of an object or a subject being measured without relative movement of the meter or subject. A scanning device which includes an optical assembly having an objective lens and a prism movable as a unit along or about the optical axis portion of light beams reflected or folded by and between the prisms whereby light received by the photometer is on the optical axis of the photometer regardless of the position of the movable optical assembly on the folded optical axis portion. Means are provided for moving the movable optical assembly linearly with respect to the optical axis portion for linear transverse scanning of a subject area or rotatively about said optical axis portion for angular scanning of a subject area. A scanning device for a luminance photometer which provides scanning microphotometric capability as, for example, to determine luminous cross-section of a cathode ray tube display.
Abstract:
The present patent application provides a vertical cavity surface emitting laser assembly. The vertical cavity surface emitting laser assembly includes a vertical cavity surface emitting laser, optical element and optical detector. The optical element includes an identation. A portion of the output light of the VCSEL passes through the indentation and to the optical detector to be used for power monitoring.
Abstract:
A mobile terminal may be provided that includes a case having a through window formed in front of the case, an optical sensor arranged in the case toward the through window, a glass formed of an opaque material to cover the through window of the case, and a window layer disposed on a behind face of the glass, with a fine hole formed above the optical sensor.
Abstract:
A monitoring device includes a first aperture plate, a second aperture plate, and a photodiode. The first aperture is disposed in a light path of a light beam emitted by a light source and includes a first aperture arranged such that a portion of the light beam having maximum light intensity passes and a reflecting portion that reflects the light beam as a monitoring light beam. The second aperture plate is disposed in a light path of the monitoring light beam and includes a second aperture that shapes a beam diameter of the monitoring light beam. The photodiode receives the monitoring light beam.
Abstract:
A monitoring system for an lithographic system is disclosed. In particular, the monitoring system can be utilized in an extreme ultraviolet lithographic system. In a monitoring system according to the present invention, a plurality of detectors are positioned to receive radiation from a pattern of positions on a mirror that is part of the lithographic system. In some embodiments, the plurality of detectors may be positioned on the mirror. In some embodiments, the plurality of detectors may be positioned behind the mirror and receive radiation through holes formed in the mirror. In some embodiments, radiation from the pattern of positions may be reflected by facets into the detectors.
Abstract:
A method and apparatus for braking an AC motor in the higher portion of its speed range includes substantially reducing flux before applying reverse torque commands to brake the motor. A DC link bus regulator is employed to prevent increases in bus voltage and frequency.
Abstract:
The present invention relates to an optical beam detection device for detecting deviation in the optical axis of light beams from a reference optical axis, the optical beam detection device provided with a converging member for converging the light beams; a light receiving surface that is disposed near the position where light beams that have an optical axis that coincides with the reference optical axis are converged by the converging member; an optical path deflector for deflecting light beams that have an optical axis that deviates from the reference optical axis, after they have passed through the converging member; and a light detecting element for detecting the light beams that have been deflected by the optical path deflector.
Abstract:
A hemispherical detector comprising a plurality of photodetectors arranged in a substantially contiguous array, the array being substantially in the shape of a half-sphere, the half-sphere defining a closed end and an open end, the open end defining a substantially circular face. Also provided is a method for constructing a hemispherical detector comprising the steps of making a press mold of the desired shape of the hemispherical detector, pouring a material into the press mold to form a cast, finishing the cast to remove any defects, coating the cast with a coating material, and attaching a plurality of photodetectors to the cast.