Abstract:
According to the present invention, a heat exchanger comprises a fin having a plurality of through holes. The plurality of through holes include mutually adjacent first and second through holes disposed on a side closest to a heating gas's inlet side. The fin has a slit located between the first through hole and the second through hole and cut into the fin from an edge thereof located on the heating gas's inlet side to a side farther from the heating gas's inlet side than a reference line connecting a center of the first through hole and a center of the second through hole. Furthermore, the fin has at least one opening between the slit and the first and second through holes. The opening includes a first opening having a portion located on the side farther from the heating gas's inlet side than the reference line.
Abstract:
Provided is an engine with a two-stage supercharger whereby an increase in required space for installing an engine can be suppressed without impairing cooling performance of an intercooler. This engine (1) has a first compressor unit (8) and second compressor unit (12) disposed in an air intake device (2) forming an intake air passage, and this engine (1) is configured such that intake air pressurized by the first compressor unit (8) is cooled by an intercooler (14) and supplied to the second compressor unit (12), and the intake air pressurized by the second compressor unit (12) is cooled by the intercooler (14).
Abstract:
A heat exchanger that transfers heat from an exhaust gas flow to a liquid coolant includes a first heat exchange section and a second heat exchange section located adjacent the first heat exchange section. The first heat exchange section is located within a first housing that at least partially encloses a first fluid volume. The second heat exchange section is located within a second housing that at least partially encloses a second fluid volume. A first plurality of heat exchange tubes traverses the first heat exchange section, and a second plurality of heat exchange tubes traverses the second heat exchange section. An exhaust gas flow path of the heat exchanger includes the first fluid volume and the interiors of the second plurality of heat exchange tubes. A coolant flow path of the heat exchanger includes the second fluid volume and the interiors of the first plurality of heat exchange tubes.
Abstract:
An exhaust gas heat exchanger comprises connection points for the exhaust gas flow, for connecting the exhaust gas heat exchanger to an exhaust gas supply line for supplying a hot exhaust gas and an exhaust gas withdrawal line for withdrawing the exhaust gas flow cooled in the exhaust gas heat exchanger. The exhaust gas flow flows through the exhaust gas heat exchanger in a bundle of exhaust gas guiding pipes in a flow direction. The exhaust gas heat exchanger is provided with at least one coolant supply connection and at least one coolant withdrawal connection. Coolant is guided in a coolant channel in the exhaust gas heat exchanger, inside which it flows around the bundle of exhaust gas guiding pipes. The coolant channel comprises at least two regions which differ in terms of the flow direction of the exhaust gas flow by divergent flow directions of the coolant.
Abstract:
A heat exchange apparatus includes first and second sections, and further includes a first cross-flow fluid passageway disposed at least partially within the first section, defined by an internal surface of the first section, and including an inlet and outlet. The apparatus also includes a second cross-flow fluid passageway disposed at least partially within the second section and including an inlet and an outlet. The apparatus includes an interior fluid passageway with at least one tube disposed at least partially within the first section and at least partially within the second section, extending at least partially through the first passageway and at least partially through the second passageway, and including at least an inlet and an outlet. A sealing zone is disposed between the first section and the second section. The sealing zone isolates the first section from the second section either or both mechanically and in fluid communication.
Abstract:
A gas turbine engine includes a fuel-oil heat exchange system in which the fuel is continuously heated by a primary hot oil flow in a primary fuel-oil heat exchanger and the fuel is selectively heated in a secondary fuel-oil heat exchanger by a secondary hot oil flow selectively passing through or bypassing a secondary fuel-oil heat exchanger, controlled by a thermal valve.
Abstract:
A component of an exhaust gas system for an internal combustion engine includes at least one housing with an inlet and an outlet for an exhaust gas and at least one inflow and one outflow for a medium. The component has a heat exchanger around which the exhaust gas can flow. The heat exchanger has a first thermal mass and a catalytic converter body through which the exhaust gas can flow. The catalytic converter body has a second thermal mass. A motor vehicle having a component and a method for operating a component, are also provided.
Abstract:
An exhaust gas processing device includes an air preheater for preheating air for combustion in a combustion device by using an exhaust gas emitted from the combustion device; a gas-gas heater heat recovery device composed of a heat transfer tube for recovering the heat of the exhaust gas to a heat medium; a dust collector; a wet-type desulfurization device; a gas-gas heater re-heater composed of a heat transfer tube for heating the exhaust gas at its outlet by using the heat medium supplied from the gas-gas heater heat recovery device, which are installed in that order from the upstream to the downstream of an exhaust gas duct of the combustion device.
Abstract:
A heat exchange apparatus including a housing, a first array of fluid conduits provided within the housing, and a second array of fluid conduits provided within the housing. The first and second arrays of fluid conduits are configured to carry a first fluid. The heat exchange apparatus also includes a first fluid passageway provided within the housing, where the first fluid passageway is defined by an internal surface of the housing and by a baffle plate. The first fluid passageway is configured to carry a second fluid. The baffle plate is configured to divide the first fluid passageway into a first flow path and a second flow path, where the first array of fluid conduits extends through the first flow path and the second array of fluid conduits extends through the second flow path.
Abstract:
A heat exchange apparatus including a housing, a first array of fluid conduits provided within the housing, and a second array of fluid conduits provided within the housing. The first and second arrays of fluid conduits are configured to carry a first fluid. The heat exchange apparatus also includes a first fluid passageway provided within the housing, where the first fluid passageway is defined by an internal surface of the housing and by a baffle plate. The first fluid passageway is configured to carry a second fluid. The baffle plate is configured to divide the first fluid passageway into a first flow path and a second flow path, where the first array of fluid conduits extends through the first flow path and the second array of fluid conduits extends through the second flow path.