Abstract:
The present invention provides a semiconductor structure comprising a wafer and an aligning mark. The wafer has a dicing region which comprises a central region, a middle region surrounds the central region, and a peripheral region surrounds the middle region. The aligning mark is disposed in the dicing region, wherein the alignment mark is a mirror symmetrical pattern. The aligning mark comprises a plurality of second patterns in the middle region and a plurality of third patterns disposed in peripheral region, wherein each third pattern comprises a plurality of lines, and a width of the line is 10 times less than a width of the L-shapes. The present invention further provides a method of forming the same.
Abstract:
A method of forming a semiconductor device is disclosed. A substrate having a first area and a second area is provided. A first doped layer containing a first type of dopant is formed on the substrate only in the first area. A second doped layer containing a second type of dopant is formed on the substrate only in the second area. An annealing step is performed to drive the first type of dopant and the second type of dopant into the substrate.
Abstract:
The present invention provides a semiconductor structure comprising a wafer and an aligning mark. The wafer has a dicing region which comprises a central region, a middle region surrounds the central region, and a peripheral region surrounds the middle region. The aligning mark is disposed in the dicing region, wherein the alignment mark is a mirror symmetrical pattern. The aligning mark comprises a plurality of second patterns in the middle region and a plurality of third patterns disposed in peripheral region, wherein each third pattern comprises a plurality of lines, and a width of the line is 10 times less than a width of the L-shapes. The present invention further provides a method of forming the same.
Abstract:
A semiconductor device and method of forming the same, the semiconductor device includes plural bit lines, plural conductive patterns, plural conductive pads and a spacer. The bit lines are disposed on a substrate, along a first direction. The conductive patterns are disposed on the substrate, along the first direction, wherein the conductive patterns and the bit lines are alternately arranged in a second direction perpendicular to the first direction. The conductive pads are arranged in an array and disposed over the conductive patterns and the bit lines. The spacer is disposed between the bit lines and the conductive patterns, under the conductive pads, wherein the spacers includes a tri-layered structure having a first layer, a second layer and a third layer, and the second layer includes a plurality of air gaps separated arranged along the first direction.
Abstract:
A semiconductor device and method of forming the same, the semiconductor device includes plural bit lines, plural conductive patterns, plural conductive pads and a spacer. The bit lines are disposed on a substrate, along a first direction. The conductive patterns are disposed on the substrate, along the first direction, wherein the conductive patterns and the bit lines are alternately arranged in a second direction perpendicular to the first direction. The conductive pads are arranged in an array and disposed over the conductive patterns and the bit lines. The spacer is disposed between the bit lines and the conductive patterns, under the conductive pads, wherein the spacers includes a tri-layered structure having a first layer, a second layer and a third layer, and the second layer includes a plurality of air gaps separated arranged along the first direction.
Abstract:
A semiconductor device includes a memory region, a plurality of bit lines in the memory region, a first low-k dielectric layer on each sidewall of each bit line, a plurality of storage node regions between the bit lines, and a second low-k dielectric layer surrounding each storage node region.
Abstract:
A method for patterning a semiconductor structure is provided, including forming an additional third material layer on a thinner portion of a second material layer to be an etching buffer layer. The removed thickness of the thinner portion of the second material layer covered by the third material layer during an etching back process is therefore reduced.
Abstract:
A semiconductor memory device includes a semiconductor substrate, a first support layer, a first electrode, a capacitor dielectric layer, and a second electrode. The first support layer is disposed on the semiconductor substrate. The first electrode is disposed on the semiconductor substrate and penetrates the first support layer. The capacitor dielectric layer is disposed on the first electrode. The second electrode is disposed on the semiconductor substrate, and at least a part of the capacitor dielectric layer is disposed between the first electrode and the second electrode. The first support layer includes a carbon doped nitride layer, and a carbon concentration of a bottom portion of the first support layer is higher than a carbon concentration of a top portion of the first support layer.
Abstract:
A semiconductor memory device includes a semiconductor substrate, a gate structure, a first spacer structure, and a gate connection structure. The semiconductor substrate includes a memory cell region and a peripheral region. The gate structure is disposed on the semiconductor substrate and disposed on the peripheral region. The gate structure includes a first conductive layer and a gate capping layer. The gate capping layer is disposed on the first conductive layer. The first spacer structure is disposed on a sidewall of the first conductive layer and a sidewall of the gate capping layer. The gate connection structure includes a first part and a second part. The first part penetrates the gate capping layer and is electrically connected with the first conductive layer. The second part is connected with the first part, and the second part is disposed on and contacts a top surface of the gate capping layer.
Abstract:
A semiconductor memory device and a method of forming the same, the semiconductor memory device includes a substrate, a plurality of bit lines, a gate, a spacer layer and a first spacer. The substrate has a memory cell region and a periphery region, the a plurality of bit lines are disposed on the substrate, within the memory cell region, and the gate is disposed on the substrate, within the periphery. The spacer layer covers the bit lines and a sidewall of the gate. The first spacer is disposed at two sides of the gate, covers on the spacer layer.