Abstract:
An organic light emitting display device includes a substrate including a light-emitting region and a reflection region, a plurality of sensing patterns disposed in the light-emitting region and the reflection region, and including a material having a first reflectivity, and a reflection pattern disposed in the reflection region, and including a material having a second reflectivity, and overlapping the plurality of sensing patterns.
Abstract:
A multi-image display device according to example embodiments includes a first display panel configured to output a first image and a second display panel located on a second extension line inclined at a first angle with respect to a first extension line and configured to output a second image. The first extension line is an imaginary line extended from the first display panel along a horizontal direction of the first display panel. The second display panel reflects the first image to display a first superposition image in which the second image is superimposed on the first image.
Abstract:
An organic light emitting display device includes a substrate including a light-emitting region and a reflection region, a plurality of sensing patterns disposed in the light-emitting region and the reflection region, and including a material having a first reflectivity, and a reflection pattern disposed in the reflection region, and including a material having a second reflectivity, and overlapping the plurality of sensing patterns.
Abstract:
An organic light emitting display including a first substrate and a second substrate is described. The first substrate has a pixel divided into a light emitting area and a non-light emitting area. The first substrate has an organic light emitting diode disposed in the light emitting area. The second substrate has an infrared sensor disposed corresponding to the non-light emitting area. In the organic light emitting display, the organic light emitting diode emits visible light and infrared light, and the infrared sensor is disposed corresponding to the non-light emitting area.
Abstract:
An organic light emitting display device includes a first substrate having a plurality of organic light emitting structures thereon, a second substrate facing the first substrate to encapsulate the organic light emitting structures, an aperture under a lower surface of the first substrate, and an aperture controller under the lower surface of the first substrate. The organic light emitting structures define a pixel area. The second substrate has a light absorption area. The aperture corresponds to the light absorption area. The aperture controller is adjacent to the aperture.
Abstract:
Provided is an organic light emitting display apparatus. The organic light emitting display apparatus includes: a substrate; a display unit disposed on the substrate; an encapsulation layer covering the display unit; an integrated circuit device disposed on an outer portion of the display unit on the substrate; and a transparent protection unit (window) disposed on the encapsulation layer and separated from the integrated circuit device.
Abstract:
A touch sensor and an organic light-emitting display including the sensor are disclosed. In one embodiment, the touch sensor includes i) a substrate, ii) a sensing unit formed on or over the substrate and containing hydrogen ions, iii) a touch sensor active layer formed on or above the sensing unit and iv) a touch sensor source electrode and a touch sensor drain electrode that are electrically connected to the touch sensor active layer. The touch sensor further includes a protective layer covering the touch sensor source electrode and the touch sensor drain electrode, and an opposite electrode formed on the protective layer, wherein at least part of the opposite electrode is formed substantially directly above the touch sensor active layer.
Abstract:
A carrier substrate includes: a base substrate; a first coating layer on a first surface of the base substrate; and a second coating layer on a second surface of the base substrate. The thermal expansion coefficients of the first coating layer and the second coating layer are greater than a thermal expansion coefficient of the base substrate, and a thickness of the first coating layer is different from a thickness of the second coating layer.
Abstract:
Provided is a method of manufacturing a capacitor of a display apparatus, the display apparatus being formed on a substrate and including a thin film transistor, which includes an active layer, a gate electrode, and source and drain electrodes, a display device connected to the thin film transistor, and the capacitor, the method including: forming an electrode layer on the substrate; forming a passivation layer on the electrode layer; patterning the passivation layer to form a first pattern including first branch patterns parallel to each other, and a second pattern including second branch patterns parallel to each other and interposed between the first branch patterns; and forming first and second electrodes by etching the electrode layer using the first and second patterns as masks.
Abstract:
A method of manufacturing a flexible display device and a carrier substrate for manufacturing the same are disclosed. In one aspect, the method includes preparing a first release area and a first attachment area around the first surface area on a first surface, attaching a base substrate to the first surface, and forming a display unit on the base substrate corresponding to the first release area of the carrier substrate. The method also includes cutting the area of the base substrate corresponding to the first release area of the carrier substrate so as to include the display unit, and separating the cut base substrate from the carrier substrate. Thus, the carrier substrate and the base substrate may be smoothly combined with each other and separated from each other without an additional mask deposition process. Also, damage to a product that may occur during combination and separation of the substrates may be much reduced.