Abstract:
A laser crystallization apparatus includes a laser generating module configured to generate a laser beam, an optical module configured to guide the laser beam, an annealing chamber comprising a stage on which a target substrate comprising an amorphous thin film formed therein is disposed, the stage being movable along an X-axis direction and a Y-axis direction, and a tilt refractive lens configured to transform the laser beam having a cross-sectional area of a rectangle shape into a tilted laser beam having a cross-sectional area of a non-rectangular parallelogram shape and to irradiate the tilted laser beam perpendicular to the stage.
Abstract:
A method for manufacturing a display device includes: forming a deformed layer on a support substrate by a silane coupling agent; performing UV treatment on the deformed layer; forming a thin film substrate on the deformed layer; forming a pixel and an encapsulation member on the thin film substrate; and separating the support substrate from the thin film substrate.
Abstract:
A metal wire included in a display device, the metal wire includes a first metal layer including a nickel-chromium alloy, a first transparent oxide layer disposed on the first metal layer, and a second metal layer disposed on the first transparent oxide layer.
Abstract:
In a flexible organic light-emitting display device and a method of manufacturing the same, a photolysis layer and an electrostaticity prevention layer are sequentially formed on a carrier substrate, a first flexible substrate is formed on the electrostaticity prevention layer, a display unit is formed on the first flexible substrate, the display unit is covered with the second flexible substrate, and light is irradiated so as to decompose the photolysis layer and to remove the carrier substrate. The formed flexible organic light-emitting display device may have improved flexibility because a flexible substrate is used instead of a typical strong and thick glass substrate. In addition, occurrence of electrostaticity during the separation of the carrier substrate is suppressed by the electrostaticity prevention layer, and thus, damage of the display unit due to electrical impacts is also reduced.
Abstract:
A laser crystallization system includes a transfer part that transfers a substrate on which an amorphous silicon thin film is deposited into a chamber, a laser irradiation part that irradiates an excimer laser to the substrate for crystallization of the amorphous silicon thin film in the chamber, a stage that supports the substrate in the chamber, a measuring part that measures a light transmittance value of the substrate, and a controller that controls the laser irradiation part to irradiate the excimer laser to the substrate when the light transmittance value is equal to or lower than a reference transmittance value and controls the laser irradiation part not to irradiate the excimer laser to the substrate when the light transmittance value is higher than the reference transmittance value.
Abstract:
A glass laminate, a display element, a display apparatus, a method of manufacturing the glass laminate, and a method of manufacturing the display panel. The glass laminate includes a carrier glass substrate; an intermediate layer stacked on the carrier glass substrate and formed of a material having a columnar grain structure; and a thin glass substrate stacked on the intermediate layer.
Abstract:
A carrier substrate includes: a base substrate; a first coating layer on a first surface of the base substrate; and a second coating layer on a second surface of the base substrate. The thermal expansion coefficients of the first coating layer and the second coating layer are greater than a thermal expansion coefficient of the base substrate, and a thickness of the first coating layer is different from a thickness of the second coating layer.
Abstract:
A method of manufacturing a flexible display device and a carrier substrate for manufacturing the same are disclosed. In one aspect, the method includes preparing a first release area and a first attachment area around the first surface area on a first surface, attaching a base substrate to the first surface, and forming a display unit on the base substrate corresponding to the first release area of the carrier substrate. The method also includes cutting the area of the base substrate corresponding to the first release area of the carrier substrate so as to include the display unit, and separating the cut base substrate from the carrier substrate. Thus, the carrier substrate and the base substrate may be smoothly combined with each other and separated from each other without an additional mask deposition process. Also, damage to a product that may occur during combination and separation of the substrates may be much reduced.
Abstract:
A glass laminate, a display element, a display apparatus, a method of manufacturing the glass laminate, and a method of manufacturing the display panel. The glass laminate includes a carrier glass substrate; an intermediate layer stacked on the carrier glass substrate and formed of a material having a columnar grain structure; and a thin glass substrate stacked on the intermediate layer.
Abstract:
In a flexible organic light-emitting display device and a method of manufacturing the same, a photolysis layer and an electrostaticity prevention layer are sequentially formed on a carrier substrate, a first flexible substrate is formed on the electrostaticity prevention layer, a display unit is formed on the first flexible substrate, the display unit is covered with the second flexible substrate, and light is irradiated so as to decompose the photolysis layer and to remove the carrier substrate. The formed flexible organic light-emitting display device may have improved flexibility because a flexible substrate is used instead of a typical strong and thick glass substrate. In addition, occurrence of electrostaticity during the separation of the carrier substrate is suppressed by the electrostaticity prevention layer, and thus, damage of the display unit due to electrical impacts is also reduced.