Abstract:
An infrared detector includes a substrate, a light blocking layer on the substrate, a lower electrode on the light blocking layer, the lower electrode electrically connected to the light blocking layer, a lower insulating layer on the light blocking layer, a first semiconductor layer on the lower insulating layer, a first source electrode and a first drain electrode on the first semiconductor layer, an upper insulating layer on the first semiconductor layer, and a first gate electrode on the upper insulating layer, the first gate electrode electrically connected to the lower electrode, where the first semiconductor layer includes a zinc and a nitrogen, and the first semiconductor layer is configured to generate electric charges by reacting with an infrared ray.
Abstract:
A touch display apparatus includes a base substrate, a light blocking semiconductor pattern disposed on the base substrate and configured to block a visible light and transmit an infrared light, a sensing element disposed on the light blocking semiconductor pattern and configured to detect a touch position using an incident infrared light, a driving element configured to drive the sensing element, a signal line electrically connected with the sensing element or the driving element, and a wiring connecting part disposed under the signal line and including a same material as the light blocking semiconductor pattern.
Abstract:
An organic light emitting display including a first substrate and a second substrate is described. The first substrate has a pixel divided into a light emitting area and a non-light emitting area. The first substrate has an organic light emitting diode disposed in the light emitting area. The second substrate has an infrared sensor disposed corresponding to the non-light emitting area. In the organic light emitting display, the organic light emitting diode emits visible light and infrared light, and the infrared sensor is disposed corresponding to the non-light emitting area.
Abstract:
A display substrate includes a base substrate, a reflection controlling layer disposed on the base substrate, and a metal wiring layer disposed on the reflection controlling layer. The metal wiring layer comprises an opaque metal. The reflection controlling layer changes wavelength-specific reflectance of reflected light using destructive interference. The reflected light is reflected from the metal wiring layer through the base substrate and the reflection controlling layer.
Abstract:
An infrared detector includes a substrate, a light blocking layer on the substrate, a lower electrode on the light blocking layer, the lower electrode electrically connected to the light blocking layer, a lower insulating layer on the light blocking layer, a first semiconductor layer on the lower insulating layer, a first source electrode and a first drain electrode on the first semiconductor layer, an upper insulating layer on the first semiconductor layer, and a first gate electrode on the upper insulating layer, the first gate electrode electrically connected to the lower electrode, where the first semiconductor layer includes a zinc and a nitrogen, and the first semiconductor layer is configured to generate electric charges by reacting with an infrared ray.
Abstract:
A method of processing touch-image data includes calculating a plurality of motion vectors using a plurality of low-resolution touch-image data frames, aligning sensing data corresponding to an object detected in the low-resolution touch-image data frames using the motion vectors to generate an overlapped touch-image data frame, generating high-resolution data corresponding to the detected object using the overlapped touch-image data frame and detecting the touch position and generating touch position data of the detected object using the high-resolution touch position data corresponding to the detected object.
Abstract:
A method of processing touch-image data includes calculating a plurality of motion vectors using a plurality of low-resolution touch-image data frames, aligning sensing data corresponding to an object detected in the low-resolution touch-image data frames using the motion vectors to generate an overlapped touch-image data frame, generating high-resolution data corresponding to the detected object using the overlapped touch-image data frame and detecting the touch position and generating touch position data of the detected object using the high-resolution touch position data corresponding to the detected object.
Abstract:
An infrared detector includes a substrate, a light blocking layer on the substrate, a lower electrode on the light blocking layer, the lower electrode electrically connected to the light blocking layer, a lower insulating layer on the light blocking layer, a first semiconductor layer on the lower insulating layer, a first source electrode and a first drain electrode on the first semiconductor layer, an upper insulating layer on the first semiconductor layer, and a first gate electrode on the upper insulating layer, the first gate electrode electrically connected to the lower electrode, where the first semiconductor layer includes a zinc and a nitrogen, and the first semiconductor layer is configured to generate electric charges by reacting with an infrared ray.
Abstract:
An infrared detector includes a substrate, a light blocking layer on the substrate, a lower electrode on the light blocking layer, the lower electrode electrically connected to the light blocking layer, a lower insulating layer on the light blocking layer, a first semiconductor layer on the lower insulating layer, a first source electrode and a first drain electrode on the first semiconductor layer, an upper insulating layer on the first semiconductor layer, and a first gate electrode on the upper insulating layer, the first gate electrode electrically connected to the lower electrode, where the first semiconductor layer includes a zinc and a nitrogen, and the first semiconductor layer is configured to generate electric charges by reacting with an infrared ray.