INTEGRATED CANTILEVER SWITCH
    31.
    发明申请

    公开(公告)号:US20180182902A1

    公开(公告)日:2018-06-28

    申请号:US15892028

    申请日:2018-02-08

    Abstract: An integrated transistor in the form of a nanoscale electromechanical switch eliminates CMOS current leakage and increases switching speed. The nanoscale electromechanical switch features a semiconducting cantilever that extends from a portion of the substrate into a cavity. The cantilever flexes in response to a voltage applied to the transistor gate thus forming a conducting channel underneath the gate. When the device is off, the cantilever returns to its resting position. Such motion of the cantilever breaks the circuit, restoring a void underneath the gate that blocks current flow, thus solving the problem of leakage. Fabrication of the nano-electromechanical switch is compatible with existing CMOS transistor fabrication processes. By doping the cantilever and using a back bias and a metallic cantilever tip, sensitivity of the switch can be further improved. A footprint of the nano-electromechanical switch can be as small as 0.1×0.1 μm2.

    VERTICAL TUNNELING FINFET
    32.
    发明申请
    VERTICAL TUNNELING FINFET 审中-公开
    垂直隧道焊接

    公开(公告)号:US20160293756A1

    公开(公告)日:2016-10-06

    申请号:US14675298

    申请日:2015-03-31

    Abstract: A tunneling transistor is implemented in silicon, using a FinFET device architecture. The tunneling FinFET has a non-planar, vertical, structure that extends out from the surface of a doped drain formed in a silicon substrate. The vertical structure includes a lightly doped fin defined by a subtractive etch process, and a heavily-doped source formed on top of the fin by epitaxial growth. The drain and channel have similar polarity, which is opposite that of the source. A gate abuts the channel region, capacitively controlling current flow through the channel from opposite sides. Source, drain, and gate terminals are all electrically accessible via front side contacts formed after completion of the device. Fabrication of the tunneling FinFET is compatible with conventional CMOS manufacturing processes, including replacement metal gate and self-aligned contact processes. Low-power operation allows the tunneling FinFET to provide a high current density compared with conventional planar devices.

    Abstract translation: 使用FinFET器件架构,在硅中实现隧道晶体管。 隧道FinFET具有非平面的垂直结构,其从形成在硅衬底中的掺杂漏极的表面延伸出来。 垂直结构包括由减法蚀刻工艺限定的轻掺杂的鳍,以及通过外延生长形成在鳍的顶部上的重掺杂源。 漏极和沟道具有相似的极性,与源极相反。 栅极邻接通道区域,电容地控制从相对侧通过通道的电流。 源极,漏极和栅极端子都可以通过在器件完成之后形成的前侧触点电可访问。 隧道FinFET的制造与常规CMOS制造工艺兼容,包括替换金属栅极和自对准接触工艺。 与传统的平面器件相比,低功耗操作允许隧道FinFET提供高电流密度。

    INTEGRATED CANTILEVER SWITCH
    33.
    发明申请

    公开(公告)号:US20160293371A1

    公开(公告)日:2016-10-06

    申请号:US14675359

    申请日:2015-03-31

    Abstract: An integrated transistor in the form of a nanoscale electromechanical switch eliminates CMOS current leakage and increases switching speed. The nanoscale electromechanical switch features a semiconducting cantilever that extends from a portion of the substrate into a cavity. The cantilever flexes in response to a voltage applied to the transistor gate thus forming a conducting channel underneath the gate. When the device is off, the cantilever returns to its resting position. Such motion of the cantilever breaks the circuit, restoring a void underneath the gate that blocks current flow, thus solving the problem of leakage. Fabrication of the nano-electromechanical switch is compatible with existing CMOS transistor fabrication processes. By doping the cantilever and using a back bias and a metallic cantilever tip, sensitivity of the switch can be further improved. A footprint of the nano-electromechanical switch can be as small as 0.1×0.1 μm2.

    INTEGRATED CANTILEVER SWITCH
    34.
    发明申请
    INTEGRATED CANTILEVER SWITCH 审中-公开
    集成式CANTILEVER开关

    公开(公告)号:US20160380118A1

    公开(公告)日:2016-12-29

    申请号:US15260206

    申请日:2016-09-08

    Abstract: An integrated transistor in the form of a nanoscale electromechanical switch eliminates CMOS current leakage and increases switching speed. The nanoscale electromechanical switch features a semiconducting cantilever that extends from a portion of the substrate into a cavity. The cantilever flexes in response to a voltage applied to the transistor gate thus forming a conducting channel underneath the gate. When the device is off, the cantilever returns to its resting position. Such motion of the cantilever breaks the circuit, restoring a void underneath the gate that blocks current flow, thus solving the problem of leakage. Fabrication of the nano-electromechanical switch is compatible with existing CMOS transistor fabrication processes. By doping the cantilever and using a back bias and a metallic cantilever tip, sensitivity of the switch can be further improved. A footprint of the nano-electromechanical switch can be as small as 0.1×0.1 μm2.

    Abstract translation: 纳米级机电开关形式的集成晶体管消除了CMOS电流泄漏并提高了开关速度。 纳米尺度的机电开关具有从衬底的一部分延伸到空腔中的半导体悬臂。 悬臂响应于施加到晶体管栅极的电压而弯曲,从而在栅极下形成导电沟道。 当设备关闭时,悬臂返回到其静止位置。 悬臂的这种运动打破了电路,恢复了阻挡电流的门下方的空隙,从而解决了泄漏问题。 纳米机电开关的制造与现有的CMOS晶体管制造工艺兼容。 通过掺杂悬臂并使用背偏压和金属悬臂尖,可以进一步提高开关的灵敏度。 纳米机电开关的占地面积可以小至0.1×0.1μm2。

    SEMICONDUCTOR DEVICE PROVIDING ENHANCED FIN ISOLATION AND RELATED METHODS
    37.
    发明申请
    SEMICONDUCTOR DEVICE PROVIDING ENHANCED FIN ISOLATION AND RELATED METHODS 有权
    提供加强熔融隔离的半导体器件及相关方法

    公开(公告)号:US20150115370A1

    公开(公告)日:2015-04-30

    申请号:US14068340

    申请日:2013-10-31

    Abstract: A method for making a semiconductor device may include forming a first semiconductor layer on a substrate comprising a first semiconductor material, forming a second semiconductor layer on the first semiconductor layer comprising a second semiconductor material, and forming mask regions on the second semiconductor layer and etching through the first and second semiconductor layers to define a plurality of spaced apart pillars on the substrate. The method may further include forming an oxide layer laterally surrounding the pillars and mask regions, and removing the mask regions and forming inner spacers on laterally adjacent corresponding oxide layer portions atop each pillar. The method may additionally include etching through the second semiconductor layer between respective inner spacers to define a pair of semiconductor fins of the second semiconductor material from each pillar, and removing the inner spacers and forming an oxide beneath each semiconductor fin.

    Abstract translation: 制造半导体器件的方法可以包括在包括第一半导体材料的衬底上形成第一半导体层,在包括第二半导体材料的第一半导体层上形成第二半导体层,以及在第二半导体层上形成掩模区域和蚀刻 通过第一和第二半导体层在衬底上限定多个间隔开的柱。 该方法可以进一步包括在横向围绕柱和掩模区域形成氧化物层,以及去除掩模区域并在横向相邻的每个柱顶上相应的氧化物层部分上形成内部间隔物。 该方法还可以包括通过相应的内部间隔物之间​​的第二半导体层进行蚀刻,以从每个支柱形成第二半导体材料的一对半导体鳍片,以及去除内部间隔物并在每个半导体鳍片之下形成氧化物。

Patent Agency Ranking