Abstract:
Magnetic tunnel junctions (MTJs) and methods of forming same are disclosed. A pinned layer is disposed in the MTJ such that a free layer of the MTJ can couple to a drain of an access transistor when provided in a magnetic random access memory (MRAM) bitcell. This structure alters the write current flow direction to align the write current characteristics of the MTJ with write current supply capability of an MRAM bitcell employing the MTJ. As a result, more write current can be provided to switch the MTJ from a parallel (P) to anti-parallel (AP) state. An anti-ferromagnetic material (AFM) layer is provided on the pinned layer to fix pinned layer magnetization. To provide enough area for depositing the AFM layer to secure pinned layer magnetization, a pinned layer having a pinned layer surface area greater than a free layer surface area of the free layer is provided.
Abstract:
In one embodiment, a method of simulating an operation of an artificial neural network on a binary neural network processor includes receiving a binary input vector for a layer including a probabilistic binary weight matrix and performing vector-matrix multiplication of the input vector with the probabilistic binary weight matrix, wherein the multiplication results are modified by simulated binary-neural-processing hardware noise, to generate a binary output vector, where the simulation is performed in the forward pass of a training algorithm for a neural network model for the binary-neural-processing hardware.
Abstract:
Certain aspects of the present disclosure are directed to methods and apparatus for convolution computation. One example apparatus generally includes a static random-access memory (SRAM) having a plurality of memory cells. Each of the plurality of memory cells may include a flip-flop (FF) having an output node and a complementary output node; a first switch coupled between the output node and a bit line (BL) of the SRAM, the first switch having a control input coupled to a word line (WL) of the SRAM; and a second switch coupled between the complementary output node and a complementary bit line (BLB) of the SRAM, the second switch having another control input coupled to a complementary word line (WLB) of the SRAM.
Abstract:
A perpendicular magnetic tunnel junction (pMTJ) device includes a perpendicular reference layer, a tunnel barrier layer on a surface of the perpendicular reference layer, and a perpendicular free layer on a surface of the tunnel barrier layer. The pMTJ device also includes a dielectric passivation layer on the tunnel barrier layer and surrounding the perpendicular free layer. The pMTJ device further includes a high permeability material on the dielectric passivation layer that is configured to be magnetized by the perpendicular reference layer and to provide a stray field to the perpendicular free layer that compensates for a stray field from the perpendicular reference layer.
Abstract:
Shared source line magnetic tunnel junction (MTJ) bit cells employing uniform MTJ connection patterns for reduced area are disclosed. In one aspect, a two (2) transistor, two (2) MTJ (2T2MTJ) bit cell includes a shared source line system having first and second source lines. A uniform MTJ connection pattern results in the first source line disposed in an upper metal layer and electrically coupled to a free layer of a first MTJ, and the second source line disposed in a lower metal layer and electrically coupled to a second access transistor. Middle segments are disposed in middle metal layers to reserve the middle metal layers for strap segments of a strap cell that may be used to electrically couple the first and second source lines. Electrically coupling the first and second source lines using the strap cell allows each MTJ to logically share a single source line.
Abstract:
A method includes coupling a first magnetic tunnel junction (MTJ) element and a second MTJ element to a comparison circuit. The method also includes comparing, at the comparison circuit, a first resistance of the first MTJ element to a second resistance of the second MTJ element. The method further includes generating a first physical unclonable function (PUF) output bit based on a result of comparing the first resistance to the second resistance.
Abstract:
Magnetic random access memory (MRAM) bit cells employing source lines and/or bit lines disposed in multiple, stacked metal layers to reduce MRAM bit cell resistance are disclosed. Related methods and systems are also disclosed. In aspects disclosed herein, MRAM bit cells are provided in a memory array. The MRAM bit cells are fabricated in an integrated circuit (IC) with source lines and/or bit lines formed by multiple, stacked metal layers disposed above a semiconductor layer to reduce the resistance of the source lines. In this manner, if node size in the IC is scaled down, the resistance of the source lines and/or the bit lines can be maintained or reduced to avoid an increase in drive voltage that generates a write current for write operations for the MRAM bit cells.
Abstract:
A method includes coupling a first magnetic tunnel junction (MTJ) element and a second MTJ element to a comparison circuit. The method also includes comparing, at the comparison circuit, a first resistance of the first MTJ element to a second resistance of the second MTJ element. The method further includes generating a first physical unclonable function (PUF) output bit based on a result of comparing the first resistance to the second resistance.
Abstract:
One feature pertains to a method of implementing a physically unclonable function. The method includes initializing an array of magnetoresistive random-access memory (MRAM) cells to a first logical state, where each of the MRAM cells have a random transition voltage that is greater than a first voltage and less than a second voltage. The transition voltage represents a voltage level that causes the MRAM cells to transition from the first logical state to a second logical state. The method further includes applying a programming signal voltage to each of the MRAM cells of the array to cause at least a portion of the MRAM cells of the array to randomly change state from the first logical state to the second logical state, where the programming signal voltage is greater than the first voltage and less than the second voltage.
Abstract:
Systems and method for reading/sensing data stored in magnetoresistive random access memory (MRAM) cells using magnetically annealed reference cells. A MRAM includes a reference circuit comprising at least one magnetic storage cell, wherein each magnetic storage cell in the MRAM is programmed to the same state. The reference circuit includes a load element coupled to the magnetic storage cell, wherein the load element is configured to establish a reference voltage during a read operation.