Abstract:
A charged particle beam apparatus includes a stage for fixing a sample, a driving mechanism for driving the stage, a focused ion beam column, an electron beam column, a detector that detects a secondary charged particle emitted from the sample irradiated with a charged particle beam, a gas supplying device that supplies gas for forming a deposition film on a surface of the sample, and a control device that generates image data indicating the position distribution of the secondary charged particle detected by the detector. The control device irradiates the sample with the electron beam prior to irradiating the sample with a focused ion beam, recognizes an alignment mark provided in the sample in the image data by the electron beam, and performs positioning of an irradiation region of the sample using the alignment mark.
Abstract:
A cross-section processing and observation method performed by a cross-section processing and observation apparatus comprises a cross-section processing step of forming a cross-section by irradiating a sample with an ion beam; a cross-section observation step of obtaining an observation image of the cross-section by irradiating the cross-section with an electron beam; and repeating the cross-section processing step and the cross-section observation step so as to obtain observation images of a plurality of cross-sections. In a case where Energy Dispersive X-ray Spectrometry (EDS) measurement of the cross-section is performed and an X-ray of a specified material or of a non-specified material that is different from a pre-specified material is detected, an irradiation condition of the ion beam is changed so as to obtain observation images of a plurality of cross-sections of the specified material, and the cross-section processing and observation of the specified material is performed.
Abstract:
A charged particle beam apparatus includes a sample stage, a focused ion beam column, a scattered electron detector that detects backscattered electrons generated from a cross-section of a sample, a crystal orientation information generation unit that generates crystal orientation information on a predetermined region of the cross-section, and an angle calculation unit that calculates attachment angles of the sample stage, corresponding to a direction of the cross-section. In response to receiving input of information indicating that the crystal orientation information on the region displayed on a display unit is changed to aimed second crystal orientation information, the angle calculation unit calculates the attachment angles corresponding to the direction of the cross-section for generating the second crystal orientation information, and the focused ion beam column performs etching processing on the cross-section at the calculated attachment angles.
Abstract:
An ion beam apparatus including: an ion source configured to emit an ion beam; a condenser lens electrode configured to condense the ion beam; a condenser lens power source configured to apply a voltage to the condenser lens electrode; a storage portion configured to store, a first voltage value, a second voltage value, a third voltage value, and a fourth voltage value; and a control portion configured to retrieve the third voltage value from the storage portion and set the retrieved third voltage value to the condenser lens power source when an observation mode is switched to a wide-range observation mode, and retrieve the fourth voltage value from the storage portion and set the retrieved fourth voltage value to the condenser lens power source when a processing mode is switched to the wide-range observation mode.
Abstract:
Automated processing is provided. A charged particle beam apparatus includes: an image identity degree determination unit determining whether an identity degree is equal to or greater than a predetermined value, the identity degree indicating a degree of identity between a processing cross-section image that is an SEM image obtained through observation of a cross section of the sample by a scanning electron microscope, and a criterion image that is the processing cross-section image previously registered; and a post-determination processing unit performing a predetermined processing operation according to a result of the determination by the image identity degree determination unit.
Abstract:
The focused ion beam apparatus includes: an electron beam column; a focused ion beam column; a sample stage; a coordinate acquisition unit configured to acquire, when a plurality of irradiation positions to which the focused ion beam is to be applied are designated on a sample, plane coordinates of each of the irradiation positions; a movement amount calculation unit configured to calculate, based on the plane coordinates, a movement amount by which the sample stage is to be moved to a eucentric height so that the eucentric height matches an intersection position at which the electron beam and the focused ion beam match each other at each of the irradiation positions; and a sample stage movement control unit configured to move, based on the movement amount, the sample stage to the eucentric height at each of the irradiation positions.
Abstract:
To automatically repeat an operation of isolating a sample piece, which is formed by processing a sample with an ion beam, and transferring the sample piece to a sample piece holder, a charged particle beam device includes a computer configured to perform control so that, without rotating a needle with which the sample piece is fixed to the sample piece holder, a deposition film deposited on the needle is irradiated with a charged particle beam from a charged particle beam irradiation optical system.
Abstract:
A charged particle beam includes: a computer that controls a needle actuating mechanism so as to approach a needle to a sample piece using a template formed from an absorbed current image obtained by irradiating the needle with a charged particle beam and a tip coordinate of the needle acquired from a secondary electron image obtained by irradiating the needle with the charged particle beam.
Abstract:
Disclosed herein is a microsample stage that can be formed through an automatic manufacturing process. The microsample stage includes a base, a microsample-fixing portion that is formed on the base and to which a microsample is fixed, and multiple alignment marks.
Abstract:
A cross-section processing observation apparatus includes an ion beam control unit for controlling a charged particle beam generation-focusing portion and a deflector and including a DAC which converts an input digital signal into an analog signal which is to be input to the deflector, and a field-of-view setting portion for setting a value of a field of view of a charged particle beam where the scanning performed by the deflector is performed on the basis of a set value of a slice amount.