Abstract:
The particle beam irradiation apparatus includes: an irradiation unit configured to radiate a particle beam; a first detection unit configured to detect first particles; a second detection unit configured to detect second particles; an image forming unit configured to form an observation image based on a first signal obtained by the detection of the first particles, which is performed by the first detection unit, and to form an observation image based on a second signal obtained by the detection of the second particles, which is performed by the second detection unit; and a control unit configured to calculate a brightness of a first region in the formed first observation image and perform a brightness adjustment of the first detection unit based on a first target brightness as a first brightness adjustment when the brightness of the first region is different from the first target brightness.
Abstract:
An apparatus for processing and observing a cross-section includes: a sample bed holding a sample; a focused ion beam column radiating a focused ion beam to the sample; an electron beam column radiating an electron beam to the sample, perpendicularly to the focused ion beam; an electron detector detecting secondary electrons or reflection electrons generated from the sample; a irradiation position controller controlling irradiation positions of the focused ion beam and the electron beam based on target irradiation position information showing target irradiation positions of beams on the sample; a process controller controlling a cross-section-exposing process that exposes a cross-section of the sample by radiating the focused ion beam to the sample and a cross-section image-obtaining process that obtains a cross-section image of the cross-section by radiating the electron beam to the cross-section; and an image quality corrector correcting image quality of the cross-section image obtained.
Abstract:
A crystal analysis apparatus includes: a measurement data storage configured to store electron back-scattering pattern (EBSP) data measured at electron beam irradiation points on a plurality of cross-sections of a sample formed substantially in parallel at prescribed intervals; a crystal orientation database configured to accumulate therein information of crystal orientations corresponding to EBSPs; and a map constructing unit that constructs a three-dimensional crystal orientation map based on distribution of crystal orientations in normal directions of a plurality of faces of a polyhedral image having the cross-sections arranged at the prescribed intervals by reading out the crystal orientations in the normal directions of the faces from the crystal orientation database on the basis of the EBSP data stored in the measurement data storage.
Abstract:
A charged particle beam apparatus includes: an electron beam irradiation unit irradiating a sample with electron beams having a first irradiation axis; a rotation stage holding the sample and having a rotation axis in a direction perpendicular to the first irradiation axis; an ion beam irradiation unit irradiating the sample with ion beams having a second irradiation axis that is substantially parallel to the rotation axis; a detection unit detecting at least one of charged particles and X rays generated via the sample by the irradiation with the ion beams and electron beams; and a gaseous ion beam irradiation unit irradiating the sample with gaseous ion beams.
Abstract:
A cross-section processing-and-observation method includes: a cross-section exposure step of irradiating a sample with a focused ion beam to expose a cross-section of the sample; a cross-sectional image acquisition step of irradiating the cross-section with an electron beam to acquire a cross-sectional image of the cross-section; and a step of repeatedly performing the cross-section exposure step and the cross-sectional image acquisition step along a predetermined direction of the sample at a setting interval to acquire a plurality of cross-sectional images of the sample. In the cross-sectional image acquisition step, a cross-sectional image is acquired under different condition settings for a plurality of regions of the cross-section.
Abstract:
Provided is a sample preparation method, including: processing a sample by an ion beam, thereby forming a thin film portion having a thickness that allows an electron beam to transmit therethrough; supplying deposition gas to the thin film portion; and irradiating the thin film portion with the electron beam, thereby forming a deposition film on a front surface of the thin film portion and a deposition film on a rear surface of the thin film portion opposed to the front surface.
Abstract:
The charged particle beam irradiation apparatus includes: a focused ion beam column; an electron beam column; an electron detector; an image forming unit configured to form an observation image based on a signal output from the electron detector; and a control unit configured to repeatedly perform exposure control in which the focused ion beam column is controlled to expose a cross section of a multilayered sample toward a stacking direction with the focused ion beam, the control unit being configured to perform, every time exposure of an observation target layer at a cross section of the multilayered sample is detected in a process of repeatedly performing the exposure control, observation control in which the electron beam column is controlled to radiate the electron beam, and the image forming unit is controlled to form an observation image of the cross section of the multilayered sample.
Abstract:
A cross-section processing and observation method performed by a cross-section processing and observation apparatus comprises a cross-section processing step of forming a cross-section by irradiating a sample with an ion beam; a cross-section observation step of obtaining an observation image of the cross-section by irradiating the cross-section with an electron beam; and repeating the cross-section processing step and the cross-section observation step so as to obtain observation images of a plurality of cross-sections. In a case where Energy Dispersive X-ray Spectrometry (EDS) measurement of the cross-section is performed and an X-ray of a specified material or of a non-specified material that is different from a pre-specified material is detected, an irradiation condition of the ion beam is changed so as to obtain observation images of a plurality of cross-sections of the specified material, and the cross-section processing and observation of the specified material is performed.
Abstract:
A charged particle beam apparatus includes a sample stage, a focused ion beam column, a scattered electron detector that detects backscattered electrons generated from a cross-section of a sample, a crystal orientation information generation unit that generates crystal orientation information on a predetermined region of the cross-section, and an angle calculation unit that calculates attachment angles of the sample stage, corresponding to a direction of the cross-section. In response to receiving input of information indicating that the crystal orientation information on the region displayed on a display unit is changed to aimed second crystal orientation information, the angle calculation unit calculates the attachment angles corresponding to the direction of the cross-section for generating the second crystal orientation information, and the focused ion beam column performs etching processing on the cross-section at the calculated attachment angles.
Abstract:
A sample observation method including: placing a sample stage at a first tilt angle with respect to a charged particle beam, and irradiating an observation surface of a sample with the charged particle beam to acquire a first charged particle image; tilting the sample stage to a second tilt angle different from the first tilt angle about a first sample stage axis, and irradiating the observation surface with the charged particle beam to acquire a second charged particle image; tilting the sample stage to a tilt angle at which an area of the observation surface in the acquired charged particle image is larger between the first charged particle image and the second charged particle image; and irradiating the observation surface with the charged particle beam to observe the observation surface.