Abstract:
A magnetoresistive head has a magnetoresistive film including first and second magnetization free layers, an intermediate layer sandwiched between the first and second magnetization free layers, an underlayer and a protective layer, which are stacked in the order of the underlayer, the first magnetization free layer, the intermediate layer, the second magnetization free layer and the protective layer and arranged to be substantially perpendicular to the air-bearing surface, and a first electrode connected with the underlayer and a second electrode connected with the protective layer, the electrodes allowing a current to flow in a direction substantially perpendicular to the plane. Each magnetization direction of the first and second magnetization free layers is allowed to vary independently in response to a signal magnetic flux from a medium. The first and second magnetization free layers produce a magnetoresistance effect in accordance with the magnetization directions thereof.
Abstract:
There is provided a practical magnetoresistance effect element which has an appropriate value of resistance, which can be sensitized and which has a small number of magnetic layers to be controlled, and a magnetic head and magnetic recording and/or reproducing system using the same. In a magnetoresistance effect element wherein a sense current is caused to flow in a direction perpendicular to the plane of the film, if a pinned layer and a free layer have a stacked construction of a magnetic layer and a non-magnetic layer or a stacked construction of a magnetic layer and a magnetic layer, it is possible to provide a practical magnetoresistance effect element which has an appropriate value of resistance, which can be sensitized and which has a small number of magnetic layers, while effectively utilizing the scattering effect depending on spin.
Abstract:
There is provided a magnetoresistance effect element capable of precisely defining the active region in a CPP type MR element and of effectively suppressing and eliminating the influence of a magnetic field due to current from an electrode, and a magnetic head and magnetic reproducing system using the same. The active region of the MR element is defined by the area of a portion through which a sense current flows. Moreover, the shape of the cross section of a pillar electrode or pillar non-magnetic material for defining the active region of the element is designed to extend along the flow of a magnetic flux so as to efficiently read only a signal from a track directly below the active region. When the magnetic field due to current from the pillar electrode can not be ignored, the magnetic flux from a recording medium asymmetrically enters yokes and the magnetization free layer of the MR element to some extent. In expectation of this, if the cross section of the pillar electrode is designed to be asymmetric so as to extend along the flow of the magnetic flux, the regenerative efficiency is improved.
Abstract:
A magnetoresistance effect film including a magnetically pinned layer, a non-magnetic intermediate layer and a magnetically free layer has sidewall layers covering at least side surfaces of the magnetically pinned layer and the non-magnetic intermediate layer. The sidewall layers are made of a high-resistance oxide, nitride, fluoride, boride, sulfide or carbide having a specular reflection effect against conduction electrons, thereby to prevent non-elastic scattering of electrons and missing of spin information on side surfaces of the magnetoresistance effect film.
Abstract:
A magnetoresistive element includes a pinned layer, free layer and non-magnetic spacer film between them. The pinned layer is made up of a first ferromagnetic metal layer, first non-metal layer on the first ferromagnetic metal layer, second non-metal layer on the first non-metal layer and different in composition from the first non-metal layer, and second ferromagnetic metal layer on the second non-metal layer. Thus, the magnetoresistive element, which may be used in a magnetic head of a magnetic recording apparatus, ensures a good bias property of the pinned film while maintaining a large MR changing rate of a specular spin valve structure, and it is simultaneously improved in soft magnetic property.
Abstract:
According to one embodiment, a magneto-resistive effect device, includes a stacked body stacked on a substrate, a pair of first electrodes that feeds current to the stacked body, a strain introduction member, and a second electrode for applying a voltage to the strain introduction member. The stacked body includes a first magnetic layer that includes one or more metals selected from the group consisting of iron, cobalt, and nickel, a second magnetic layer stacked on the first magnetic layer, having a composition that is different from the first magnetic layer, and a spacer layer disposed between the first magnetic layer and the second magnetic layer.
Abstract:
An example method for manufacturing a magneto-resistance effect element having a magnetic layer, a free magnetization layer, and a spacer layer includes forming a first metallic layer and forming, on the first metallic layer, a second metallic layer. A first conversion treatment is performed to convert the second metallic layer into a first insulating layer and to form a first metallic portion penetrating through the first insulating layer. A third metallic layer is formed on the first insulating layer and the first metallic portion. A second conversion treatment is performed to convert the third metallic layer into a second insulating layer and to form a second metallic portion penetrating through the second insulating layer.
Abstract:
According to one embodiment, a magneto-resistance effect element includes: a first electrode; a second electrode; a first magnetic layer provided between the first and the second electrodes; a second magnetic layer provided between the first magnetic layer and the second electrode; and an oxide layer of a metal oxide provided between the first magnetic layer and the second magnetic layer. The oxide layer includes wustite crystal grains of a wustite structure with a (1 1 1) plane orientation containing iron. A lattice spacing of a (1 1 1) plane of the wustite crystal grains is not less than 0.253 nanometers and not more than 0.275 nanometers.
Abstract:
A magnetoresistive element includes a magnetoresistive film including a magnetization pinned layer, a magnetization free layer, an intermediate layer arranged between the magnetization pinned layer and the magnetization free layer, a cap layer arranged on the magnetization pinned layer or on the magnetization free layer, and a functional layer arranged in the magnetization pinned layer, in the magnetization free layer, in the interface between the magnetization pinned layer and the intermediate layer, in the interface between the intermediate layer and the magnetization free layer, or in the interface between the magnetization pinned layer or the magnetization free layer and the cap layer, and a pair of electrodes which pass a current perpendicularly to a plane of the magnetoresistive film, in which the functional layer is formed of a layer including nitrogen and a metal material containing 5 atomic % or more of Fe.
Abstract:
An example magnetoresistive element includes a first magnetic layer whose magnetization direction is substantially pinned toward one direction; a second magnetic layer whose magnetization direction is changed in response to an external magnetic field; and a spacer layer. At least one of the first magnetic layer and the second magnetic layer includes a magnetic compound layer including a magnetic compound that is expressed by M1aM2bOc (where 5≦a≦68, 10≦b≦73, and 22≦c≦85). M1 is at least one element selected from the group consisting of Co, Fe, and Ni. M2 is at least one element selected from the group consisting of Ti, V, and Cr.