Abstract:
A crystal oscillator includes a surface mount type crystal unit and a mounting substrate. The surface mount type crystal unit includes a ceramic container. The surface mount type crystal unit has a rectangular shape as a planar shape. The mounting substrate includes a ceramic substrate on which an electronic component is mounted, the mounting substrate having a rectangular shape as a planar shape. The crystal oscillator has a structure where the surface mount type crystal unit and the mounting substrate are laminated, and both terminals of the surface mount type crystal unit and the mounting substrate are connected with a bonding material. The mounting substrate and the surface mount type crystal unit are connected in a positional relationship where a long side of the mounting substrate and a long side of the surface mount type crystal unit are orthogonal.
Abstract:
An oscillator includes a control voltage generator that generates a control voltage between a first reference voltage and a second reference voltage with a digital signal, and a voltage controlled oscillation circuit that outputs a signal at a frequency in response to the control voltage. The control voltage generator includes a first D/A conversion circuit of resistor voltage-dividing type that generates a voltage between the first reference voltage and the second reference voltage.
Abstract:
A system for assigning a characterization and calibrating a parameter is disclosed. The system includes a frequency measurement circuit and a finite state machine. The frequency measurement circuit is configured to measure frequencies of an oscillatory signal and to generate a measurement signal including measured frequencies. The finite state machine is configured to control measurements by the frequency measurement circuit, to assign a characterization to a parameter based on the measurement signal, and to generate a calibration signal based on the characterized parameter.
Abstract:
Automatic digital sensing and compensation of frequency drift caused by temperature, aging, and/or other effects may be provided by including a compensation capacitor array and a sensing logic. The sensing logic may be configured to detect a drift in a first control signal and to provide the compensation capacitor array with a second control signal. The second control signal is configured to cause an adjustment of capacitance in the compensation capacitor array based on the detected drift in the first control signal.
Abstract:
An oscillator amplifier biasing technique configures an oscillator amplifier to operate at a bias point causing loading on a tank circuit to have reduced or negligible dependence on amplifier bias conditions or device characteristics. The bias signal level may vary with variation in temperature. The oscillator amplifier biasing technique includes determining a bias signal level that has a minimum sensitivity of the frequency of oscillation as a function of temperature. The technique may store associated data in non-volatile memory to describe the bias signal level dependence on temperature. A digital-to-analog converter may drive the bias signal of the oscillator to the minimum sensitivity point as a function of temperature. The technique may substantially reduce effects of up-conversion of flicker noise in the oscillator output signal as well as improve frequency accuracy in the presence of effects such as mechanical strain and/or aging.
Abstract:
Embodiments include apparatuses, methods, and systems for open-loop voltage regulation and drift compensation for a digitally controlled oscillator (DCO). in embodiments, a communication circuit may include a DCO, an open-loop voltage regulator, and a calibration circuit. The open-loop voltage regulator may receive a calibration voltage and may generate a regulated voltage. The regulated voltage may be passed to the DCO. During a calibration mode, the calibration circuit may compare the regulated voltage to a reference voltage and adjust the calibration voltage based on the comparison to provide the regulated voltage with a target value. During a monitoring mode, the calibration circuit may receive a tuning code that is used to tune the DCO and further adjust the calibration voltage based on a value of the tuning code.
Abstract:
An oscillation module includes a frequency generator, a signal calibrator, a multiplexer, and a controller. The oscillation module is calibrated by using calibration parameters and a control instruction of which the frequency and phase are the same as the oscillation frequency signal generated by the frequency generator. As a consequence, an electronic pin used for processing asynchronous signals can be saved so as to reduce the chip area of the oscillation module.
Abstract:
In a method for mitigating the vibration-induced phase noise of an phase locked loop with an acceleration sensitive voltage controlled oscillator, a correction signal generated by applying a gain and a equalization to an acceleration signal provided by an acceleration sensor sensing the acceleration on the VCO, is added to the oscillator control signal for active compensation, an adaptive compensation unit dynamically adjusts the gain, the frequency response of equalization, and the sensing direction of the acceleration sensor while the phase locked loop is working to make the active compensation automatically adapt to the parameters of the voltage controlled oscillator.
Abstract:
A variable injection-strength injection-locked oscillator (ILO) is described. The variable injection-strength ILO can output an output clock signal based on an input clock signal. The variable injection-strength ILO can pause, restart, slow down, or speed up the output clock signal synchronously with respect to the input clock signal in response to receiving power mode information. Specifically, the variable injection-strength ILO can be operated under relatively strong injection when the input clock signal is paused, restarted, slowed down, or sped up.
Abstract:
High-speed CMOS ring voltage controlled oscillators with low supply sensitivity have been disclosed. According to one embodiment, a CML ring oscillator comprises a CML negative impedance compensation circuit comprising two cross coupled transistors and a resistor connected to the two transistors for resistive biasing and a CML interpolating delay cell connected in parallel with the CML negative impedance compensation. An impedance change of the CML negative impedance compensation due to supply variation counteracts an impedance change of the CML interpolating delay cell.