Abstract:
A piezoelectric device is provided and includes: a piezoelectric vibrating piece, having an outer shape in rectangular shape and including an excitation electrode formed on both principal surfaces which are a top surface and a lower surface, an electrode pad formed at both ends of one short side, and an extraction electrode extracted from the excitation electrode to the electrode pad to be electrically connected to the electrode pad; a package, including a placement surface on which the piezoelectric vibrating piece is placed as opposed to the lower surface of the piezoelectric vibrating piece, and an adhesion pad formed on the placement surface; and a conductive adhesive, securing the piezoelectric vibrating piece to the package and electrically connecting the adhesion pad to the electrode pad. An adhesive is applied on the top surface of the piezoelectric vibrating piece and between the conductive adhesive and the excitation electrode.
Abstract:
A piezoelectric device includes a piezoelectric vibrating piece, an excitation electrode, an extraction electrode, a container, a pad, a conductive member, and a heat conductive metal film. The excitation electrode is disposed on a front surface and a back surface of the piezoelectric vibrating piece. The extraction electrode is extracted from the excitation electrode. The container houses the piezoelectric vibrating piece. The pad is disposed in the container, and the pad is connected to the piezoelectric vibrating piece. The conductive member connects the pad to the extraction electrode. The heat conductive metal film is disposed at least on a surface of a pad side of the piezoelectric vibrating piece, the heat conductive metal film is extracted from the extraction electrode without contacting the excitation electrode.
Abstract:
A quartz crystal resonator unit including a quartz crystal resonator having a quartz crystal blank, a frame surrounding an outer periphery of the quartz crystal blank, and coupling members connecting the frame to the quartz crystal blank. Moreover, a lid member and a base member are attached to the frame and seal the resonator. One or more outer electrodes is formed over end surfaces of the frame, the lid member, and the base member on a side where the coupling members are coupled. The one or more outer electrodes has a machinery quality factor smaller than that of the frame.
Abstract:
A piezoelectric vibration component that includes a sealed space formed between first and second package members, and a piezoelectric vibrator is bonded to the first package member with first and second conductive adhesive portions. In the piezoelectric vibrator, a first vibration electrode and a first extended electrode are formed on a first surface of a piezoelectric substrate, and a second vibration electrode and a second extended electrode are formed on a second surface of the piezoelectric substrate. At least the second extended electrode provided on the second principal surface has a higher bonding strength with respect to the conductive adhesive than that of the electrodes on the first principal surface. The electrode patterns on the first and second principal surfaces differ from each other so that the first surface and the second surface can be distinguished from each other.
Abstract:
A resonator element includes a substrate region sandwiched by first and second excitation electrodes. The region is located within a quadrangle having four 90° corners, a pair of first sides along a thickness-shear vibration direction, and a pair of second sides perpendicular to the vibration direction. The region includes a side or a circular arc in contact with each of the first and second sides, and an outer edge recessed from at least two corners of the quadrangle in a direction intersecting the vibration direction. Further, assuming a maximum length of the region along the vibration direction is Lx, and a length of the outer edge along the vibration direction is lx, 13.7%≦(lx/Lx)≦46.0%.
Abstract:
An electronic component includes: a base material having a first conductive section; an oscillation piece having a second conductive section; a first member which is covered with a third conductive section making conductive contact with the first and second conductive sections and is provided between the base material and the oscillation piece; and a second member which is provided so as to be surrounded with the base material, the oscillation piece, and the first member and holds the base material and the oscillation piece.
Abstract:
An electronic device includes: a first-member that includes a through-hole; a second-member that includes a connection-hole and that is in contact with the first-member in a state where the through-hole and the connection-hole are in communication with each other; a first-locking-surface that is formed on the first-member while extending radially outside of the through-hole and that faces a side opposite to the connection-hole-side; a second-locking-surface that is formed in the second-member while extending radially outside of the connection-hole and that faces a side opposite to the through-hole-side; and an adhesive-portion including a shaft-portion with which the through-hole and the connection-hole are filled, a first-large-diameter portion that is formed at an end of the shaft-portion and secured to the first-locking-surface, and a second-large-diameter portion that is formed at the other end of the shaft-portion and secured to the second-locking-surface.
Abstract:
When a size from a main surface of an outer edge to a step of a first stage of a vibration section is Md1, a size from the step of the first stage to a step of a second stage is Md2, a density of materials of the substrate is dA, a density of materials of the excitation electrode is dB, and a thickness of the excitation electrode on a main surface of a mesa of the second stage is tB, a relationship of ((Md2+(dB/dA)×tB))/Md1≦1.4 is satisfied.
Abstract:
A crystal resonator element include a pair of resonating arms extending from a base, the resonating arms includes a groove, a slope portion is formed in a connection portion of the resonating arms to the base so that a distance between the groove and the outer edge of each of the resonating arms increases as it approaches the base from the resonating arms, and a non-electrode region which extends over a range of areas from a connection portion connected to a first side surface formed along the longitudinal direction of the groove and a connection portion connected to a second side surface facing the first side surface with a bottom portion disposed there between and in which excitation electrodes are not formed is provided in the groove in at least a part of the bottom portion positioned in the slope portion.
Abstract:
A surface mount piezoelectric oscillator includes a piezoelectric resonator, a mounting board, and an IC chip mounted on the mounting board. An oscillator circuit includes the IC chip and the piezoelectric resonator. The piezoelectric resonator is bonded to the mounting board with solder balls. The mounting board includes a ceramic plate. The mounting board includes connecting terminals and a wiring pattern on the one mounting board principal surface of the mounting board. The connecting terminals are connected to the terminals of the piezoelectric resonator via solder balls. The mounting board includes an intermediate layer on the one mounting board principal surface and integrally formed with the mounting board. The intermediate layer includes solder ball placement openings to position the solder balls in a center of each of the connecting terminals and an IC chip mounting opening to mount the IC chip.