Abstract:
The present disclosure describes broadband optical emission sources that include a stack of semiconductor layers, wherein each of the semiconductor layers is operable to emit light of a different respective wavelength; a light source operable to provide optical pumping for stimulated photon emission from the stack; wherein the semiconductor layers are disposed sequentially in the stack such that a first one of the semiconductor layers is closest to the light source and a last one of the semiconductor layers is furthest from the light source, and wherein each particular one of the semiconductor layers is at least partially transparent to the light generated by the other semiconductor layers that are closer to the light source than the particular semiconductor layer. The disclosure also describes various spectrometers that include a broadband optical emission device, and optionally include a tuneable wavelength filter operable to allow a selected wavelength or narrow range of wavelengths to pass through.
Abstract:
Implementations of the present disclosure relate to a plasma chamber having an optical device for measuring emission intensity of plasma species. In one implementation, the plasma chamber includes a chamber body defining a substrate processing region therein, the chamber body having a sidewall, a viewing window disposed in the sidewall, and a plasma monitoring device coupled to the viewing window. The plasma monitoring device includes an objective lens and an aperture member having a pinhole, wherein the aperture member is movable relative to the objective lens by an actuator to adjust the focal point in the plasma using principles of optics, allowing only the light rays from the focal point in the plasma to reach the pinhole. The plasma monitoring device therefore enables an existing OES (coupled to the plasma monitoring device through an optical fiber) to monitor emission intensity of the species at any specific locations of the plasma.
Abstract:
A printer includes a spectroscope that has a variable wavelength interference filter which incidents light from a measurement region, and a light receiving section which receives light from the variable wavelength interference filter and which outputs a detection signal according to an amount of received light, a carriage moving unit which relatively moves the spectroscope along one direction with respect to a measurement target of spectrometry and moves the measurement region with respect to the measurement target, and a timing detection circuit which has a differential circuit that differentiates the detection signal and outputs a differentiation signal, wherein in a case where the measurement target is a color patch, spectrometry in which the amount of received light is detected starts based on the differential signal.
Abstract:
A fiber grating demodulation system for enhancing spectral resolution by finely adjusting an imaging focus mirror, includes a laser pump source, a wavelength division multiplexer, a fiber Bragg grating, a diaphragm, a slit, a collimating mirror, a light splitting grating, an imaging focus mirror, a linear array detector. The laser pump source, the wavelength division multiplexer, the fiber Bragg grating are connected in sequence, the wavelength division multiplexer is connected to the diaphragm. Light emitted from the laser pump source is multiplexed by the wavelength division multiplexer and then enters the fiber Bragg grating, a reflection spectrum of the fiber Bragg grating enters the slit of the fiber grating demodulation system as injected light. After passing through the slit, the injected light is reflected by the collimating mirror, the light splitting grating, and the imaging focus mirror in sequence, and is finally converged to the linear array detector.
Abstract:
An optical beam scanning microscopy apparatus includes a light source adapted to emit an optical beam (2) and a microscope objective (1) adapted for focusing the optical beam (2) in an object plane (11). The microscopy apparatus includes first and second reflecting optical elements (M-X1, M-X2) disposed in series on the optical path of the optical beam (2) between the light source and the microscope objective (1), first elements of angular tilting (21, 25) adapted for tilting the first reflecting optical elements (M-X1, M-XY1) according to a first predetermined rotation angle (RX1), and second elements of angular tilting (22, 26) adapted for tilting the second reflecting optical elements (M-X2, M-XY2) according to a second rotation angle (RX2), in such a way as to angularly tilt the axis (12) of the optical beam (2) by pivoting about the center (O) of the pupil of the microscope objective (1).
Abstract:
A system and method for spectroscopic mapping, with configurable spatial resolution, of an object include a fiber optic bundle having a plurality of optical fibers arranged in a first array at an input end with each of the plurality of optical fibers spaced one from another and arranged in at least one linear array at an output end. A first mask defining a plurality of apertures equal to or greater in number than the plurality of optical fibers is positioned between an object to be imaged and the input end of the fiber optic bundle. An imaging spectrometer is positioned to receive light from the output end of the fiber optic bundle and to generate spectra of the object. A sensor associated with the imaging spectrometer converts the spectra to electrical output signals for processing by an associated computer.
Abstract:
A spectrometer is provided. In one implementation, for example, a spectrometer comprises an excitation source, a focusing lens, a movable mirror, and an actuator assembly. The focusing lens is adapted to focus an incident beam from the excitation source. The actuator assembly is adapted to control the movable mirror to move a focused incident beam across a surface of the sample.
Abstract:
An example embodiment may include a hyperspectral analyzation subassembly configured to obtain information for a sample. The hyperspectral analyzation subassembly may include one or more transmitters configured to generate electromagnetic radiation electromagnetically coupled to the sample, one or more sensors configured to detect electromagnetic radiation electromagnetically coupled to the sample, and an electromagnetically transmissive window. At least one of the sensors may be configured to detect electromagnetic radiation from the sample via the window. The hyperspectral analyzation subassembly may include an analyzation actuation subassembly configured to actuate at least a portion of the hyperspectral analyzation subassembly in one or more directions of movement with respect to the sample.
Abstract:
The present invention generally pertains to a system, method and kit for the detection and measurement of spectroscopic properties of light from a sample, or the scalable detection and measurement of spectroscopic properties of light from each sample present among multiple samples, simultaneously, wherein the system comprises: an optical train comprising a dispersing element; and an image sensor. The light detected and measured may comprise light scattered from a sample, emitted as chemiluminescence by a chemical process within a sample, selectively absorbed by a sample, or emitted as fluorescence from a sample following excitation.