Abstract:
The present invention is for a ceramic calibration filter, in one embodiment a ceramic attenuator (410), for attenuating radiation between a light source (402) and a sensor (422). A laser signal is reduced by ceramic attenuator (410) to a low-level signal that can be measured the sensor (422).
Abstract:
A device placed by a support in front of the eyes of a user protects them against luminous aggression, in particular by a laser beam. The device includes a light attenuation system to attenuate the intensity of the received beam by a particular attenuation value. A light amplification system is disposed between the light attenuation system and the eyes of the user to amplify the intensity of the light received from the light attenuation system by a particular amplification value, but such that the intensity of the light transmitted towards the eyes does not exceed a prescribed maximal intensity that is not harmful for the eyes. The attenuation and amplification values are substantially equal.
Abstract:
A protection device for an electro-optical detector used in systems for making far field diagnostic measurements of a high energy laser beam comprises a solid silicon cone having a truncated apex which functions as the pin hole aperture for the detector. The large end of the cone has a surface defined by the radius drawn from the cone axis at the truncation. This surface is coated with a reflective attenuation layer which reflects a high percentage of the energy of the incident laser beam entering the pinhole aperture thereby minimizing the absorption of the beam by the cone. The high index of refraction of the solid silicon cone permits large off-axis angles of the laser beam to be directed onto the detector resultingly increasing the field of view of a system using a given detector. The increased field of view allows a closer spacing of a plurality of detectors in the system ensuring a high spatial resolution of the laser beam for a desired field of view.
Abstract:
A method and apparatus for protecting an optical sensor is disclosed. A fixed filter having a fixed passband for light transmission is placed in front of the optical sensor. A programmable filter having a variable passband for light transmission is placed in front of the fixed filter. A controllable voltage source controls a voltage at the programmable filter that shifts the passband of the programmable filter from a first state in which the passband of the programmable filter is substantially the same as the passband of the fixed filter and a second state in which the passband of the programmable filter is different than the passband of the fixed filter.
Abstract:
An anti-dazzle imaging camera is provided that includes a photorefractive crystal that is wavelength-agnostic. The photorefractive crystal is configured to receive an optical beam. When the optical beam includes no laser, the photorefractive crystal is configured to pass the optical beam unchanged to an imaging detector. When the optical beam includes a laser, the photorefractive crystal is configured to attenuate the laser to generate a modified optical beam and to pass the modified optical beam to the imaging detector.
Abstract:
A two dimensional scanning laser system may automatically detect a laser, then align and calibrate itself to scan over the sensor area. The system may have a laser with a controller that may cause the laser to be directed over two dimensions, as well as a sensor apparatus. The laser may be controlled with a mirror system that may pivot in two directions, thus allowing the laser to be scanned over a two dimensional area. The sensor may be a point sensor, where the laser may be positioned in a constant direction, as well as a larger area sensor where the laser may be moved across the sensor area to detect objects in a two or three dimensional space. An alignment and calibration sequence may cause the laser to scan across its operational area and detect the location of one or more sensors.
Abstract:
An optical sensor arrangement includes two sensors arranged one behind the other. The operational spectral ranges of the sensors match, and the first sensor forms an attenuation filter for the second sensor, which is arranged behind the first sensor.
Abstract:
A system and method for errant laser beam detection are provided for effectively detecting small coating failures in a cost effective and robust manner. In one embodiment, a detection system includes a continuity circuit on a printed circuit board (PCB) having metal (e.g., copper) traces which are designed to burn through if an errant beam strikes them. The traces are sized and patterned appropriately to sense a minimum subaperture size.
Abstract:
A beam delivery unit and method of delivering a laser beam from a laser light source for excimer or molecular fluorine gas discharge laser systems in the DUV and smaller wavelengths is disclosed, which may comprise: a beam delivery enclosure defining an output laser light pulse beam delivery path from an output of a gas discharge laser to an input of a working apparatus employing the light contained in the output laser light pulse beam; a purge mechanism operatively connected to the beam delivery enclosure; an in-situ beam parameter monitor and adjustment mechanism within the enclosure, comprising a retractable beam redirecting optic; a beam analysis mechanism external to the enclosure; and, a retraction mechanism within the enclosure and operable from outside the enclosure and operative to move the retractable beam redirecting optic from a retracted position out of the beam path to an operative position in the beam path. The BDU may also include a beam attenuator unit contained within the enclosure adjustably mounted within the enclosure for positioning within the beam delivery path. The BDU may have at least two enclosure isolation mechanisms comprising a first enclosure isolation mechanism on a first side of the enclosure from the at least one optic module and a second enclosure isolation mechanism on a second side of the enclosure from the at least one optic module, each respective enclosure isolation mechanism comprising a flapper valve having a metal to metal seating mechanism and a locking pin assembly. A precision offset ratchet driver operative to manipulate actuator mechanisms in difficult to reach locations may be provided. An external kinematic alignment tool may be provided. A method of contamination control for a BDU is disclosed comprising selection of allowable materials and fabrication processes.
Abstract:
An imaging or viewing system, which automatically compensates for bright spots, which tend to overload or saturate imaging system. The system can be used with imaging type tracking systems, viewers and various types of optical devices which heretofore have been unable to provide satisfactory performance due to saturation or overloading of an imaging device due to bright spots, i.e., laser radiation flares or sunlight. The system in accordance with the invention is configured such that reflected radiation is imaged onto a first image plane without dividing the incoming radiation into two optical paths. A digital mirror device, i.e., is disposed at the first image plane. The radiation level of each pixel in the image plane is compared with a fixed threshold on a pixel by pixel basis and used to generate a mirror drive signal that automatically reduces the reflectivity of the corresponding mirror pixel to compensate for bright spots.