Abstract:
The invention relates to a method for adapting the clutch characteristics in a twin-clutch system (PSG) which comprises in a first train a first clutch (A) and a first partial transmission (iA) mounted downstream thereof, and in a second train a second clutch (B) and a partial transmission (iB) mounted downstream thereof. The first and the second train can be linked on the input side with a driving engine (M) and on the output side with the wheels of a vehicle. The first clutch (A) is actuated by a first clutch actuating mechanism (KA) and the second clutch (B) is actuated by a second clutch actuating mechanism (KB). A zero adjustment of the hodometry of the first and/or second clutch actuating mechanism (KA; KB) is carried out according to a predetermined strategy subject to predetermined criteria.
Abstract:
This invention is a control system for a clutch for connecting an engine to the powertrain of an HEV. The system includes a controller programmed to determine a filtered speed error of the engine and a starter/motor and to determine an engine run command. Monitoring devices operatively connected to the engine and the starter/motor are connected to output data representing the engine and starter/motor speeds to the controller. The controller is programmed to generate a clutch position command, dependent on the data, to a servo-actuator connected to the clutch. The invention, further, provides methods for controlling such a clutch including the steps of determining an engine run command, determining a filtered speed error of the engine and a starter/motor and generating a clutch position command.
Abstract:
A method of selectively controlling a power take-off (PTO) assembly includes positioning a clutch assembly radially between a shaft and a PTO gear, operably controlling the clutch assembly with a controller, and selectively engaging the clutch assembly with the controller. The controller monitors signals received from a plurality of sensors and compares the monitored signals with respective signal thresholds. The clutch assembly is engaged when the compared monitored signals are within the signal thresholds.
Abstract:
An apparatus and a method for controlling a driving mode of an HEV are provided. The apparatus releases an HEV mode at an appropriate time before forcibly releasing an engine clutch even when an accelerator pedal is engaged while driving the vehicle on an uphill road in the HEV mode to reduce a shock caused when the engine clutch is forcibly disengaged and improve riding comfort and drivability. The method includes determining whether the vehicle is driven on an uphill road from gradient information of a current road while the vehicle is driven in a HEV mode and determining a clutch engagement impossible speed corresponding to the gradient of the current road when the vehicle is driven on the uphill road. The engine clutch is disengaged to release the HEV mode when the speed of the motor is equal to or less than the determined clutch engagement impossible speed.
Abstract:
A MGECU in a control device mounted on a vehicle has a feedback control section, a correction torque calculation section, an instruction torque calculation section. The feedback control section calculates a torque to be used for performing a feedback control of an actual rotation speed to follow a target rotation speed. The correction torque calculation section calculates a correction torque based on a change rate of the target rotation speed and inertia of a rotary body which includes the motor generator. When the target rotation speed is changed to decrease a difference between the target rotation speed and the actual rotation speed, the correction torque calculation section reduces the correction torque. The instruction torque calculation section adds the torque calculated by the feedback control section and the correction torque calculated by the correction torque calculation section in order to obtain the instruction torque to be used for the motor generator.
Abstract:
A hybrid electric vehicle having a motor and an engine that are selectively connected on a driveline and controlled by a controller. The controller is configured to schedule additional motor torque to compensate for engine inertia drag based upon a clutch pressure value and a clutch slip speed value during a period of clutch engagement. The controller is also configured to maintain vehicle acceleration using a proportional integral controller to adjust the motor torque during a period of clutch engagement.
Abstract:
The occurrence of shock and the occurrence of the feeling of losing speed can be prevented. When the clutch is engaged from the state in which the clutch is disengaged and a vehicle is being driven by only the power of an electric motor, an electric motor control unit controls the electric motor so that the torque of the electric motor is decreased at a rate determined according to the torque requested by the driver. During the period in which the torque of the electric motor is decreased at the above rate, a clutch control unit controls the engagement of the clutch so that the clutch is engaged after being set to a half-engaged clutch state in which part of the power is transmitted. The present invention is applicable to hybrid vehicles.
Abstract:
A method for controlling a transmission operative to transfer power between an input member and torque machines and an output member includes determining available power, motor torque constraints, and other constraints on torque transfer. Equations are provided, transformed to a second coordinate system and simultaneously solved. An achievable torque operating region is determined.
Abstract:
In a powertrain that includes wheels for driving a vehicle, a crankshaft, a machine driveably connected to the crankshaft and able to operate alternately as an electric motor and electric generator, a transmission including an input clutch driveably connected to the crankshaft and an output driveably connected to the wheels, a method for controlling idle speed including producing a desired magnitude of input clutch torque capacity, producing a desired wheel torque, using an error represented by a difference between a desired crankshaft idle speed and a current crankshaft speed to determine a desired change in torque produced by the machine, using the magnitude of input clutch torque capacity and the desired change in torque produced by the machine to determine a desired magnitude machine torque, and using the machine to produce said desired magnitude of machine torque.
Abstract:
A method to control a powertrain including a transmission, an engine, and an electric machine includes monitoring a rotational speed of the engine, monitoring a temperature of a transmission fluid, determining a maximum hydraulic pressure within a hydraulic control system based upon the rotational speed of the engine and the temperature of the transmission fluid, determining a predicted clutch torque capacity based upon the maximum hydraulic pressure, generating a preferred input torque from the engine based upon the predicted clutch torque capacity, and utilizing the preferred input torque to control the engine.