Abstract:
A system for performing high-speed, high-resolution imaging cytometry utilizes a line-scan sensor. A cell to be characterized is transported past a scan region. An optical system focuses an image of a portion of the scan region onto at least one linear light sensor, and repeated readings of light falling on the sensor are taken while a cell is transported though the scan region. The system may image cells directly, or may excite fluorescence in the cells and image the resulting light emitted from the cell by fluorescence. The system may provide a narrow band of illumination at the scan region. The system may include various filters and imaging optics that enable simultaneous multicolor fluorescence imaging cytometry. Multiple linear sensors may be provided, and images gathered by the individual sensors may be combined to construct an image having improved signal-to-noise characteristics.
Abstract:
An optical system and associated method enable near real time optical phase conjugation. In the method, a translucent medium is illuminated by a sample illumination beam. Light scattered by the medium is directed to an electronic image sensor while a reference beam is also directed to the electronic image sensor. The scattered light and the reference beam form an interference pattern at the electronic image sensor. A digital representation of the interference pattern is recorded using the electronic image sensor, and the characteristics of a conjugate of the sample beam are computed from the numerical representation. A conjugate beam having the computed characteristics is generated using a configurable optical element and directed back to the translucent medium. The generation of the conjugate beam may be accomplished using a spatial light modulator.
Abstract:
Systems and methods for performing cytometry using a linear light sensor. An illumination field, a line scanned by the linear light sensor, or both are swept across a cell to be imaged. Relative motion between the cell and the swept illumination may be created using a movable optical component or components, by adhering cells to a plate and transporting the plate or by other techniques.
Abstract:
A system for characterizing and sorting individual molecules, for example chromatin or DNA molecules. In some configurations, the system can immobilize molecules of interest suspended in fluid in a sample stage for characterization, and selectively release the immobilized molecules to different output reservoirs, depending on the characterization result. For example, fluorescent markers may be hybridized onto molecules, which may then be attached to dielectric beads and immobilized using holographic optical tweezers or other means. The system may provide elongational flow to elongate molecules, and may detect the presence and spacing of multiple fluorescent markers hybridized to the molecules. Using advanced techniques, the system may be able to characterize features with a resolution better than the theoretical resolution of the system optics. The system may utilize a microfluidic cartridge.
Abstract:
An optical system and associated method enable near real time optical phase conjugation. In the method, a translucent medium is illuminated by a sample illumination beam. Light scattered by the medium is directed to an electronic image sensor while a reference beam is also directed to the electronic image sensor. The scattered light and the reference beam form an interference pattern at the electronic image sensor. A digital representation of the interference pattern is recorded using the electronic image sensor, and the characteristics of a conjugate of the sample beam are computed from the numerical representation. A conjugate beam having the computed characteristics is generated using a configurable optical element and directed back to the translucent medium. The generation of the conjugate beam may be accomplished using a spatial light modulator.
Abstract:
A microassembled imaging cytometer includes a sensing location that undergoes relative motion with a cell. Light from a light source is focused by a focusing element to a plurality of focused illumination spots or lines at the sensing location, illuminating the cell as the cell traverses the sensing location. A collection lens collects light emanating from the cell and refocuses the collected light onto an array light sensor. The focusing element may include an array of microlenses having spherical or aspheric surfaces. The system may include a processing unit that constructs a digital image of the cell based at least in part on signals produced by the array light sensor indicating the intensity and distribution of light falling on the array light sensor. The system may characterize cells using light emanating from the cells by fluorescence.
Abstract:
Biological cells in a liquid suspension are counted in an automated cell counter that focuses an image of the suspension on a digital imaging sensor that contains at least 4,000,000 pixels each having an area of 2×2 μm or less and that images a field of view of at least 3 mm2. The sensor enables the counter to compress the optical components into an optical path of less than 20 cm in height when arranged vertically with no changes in direction of the optical path as a whole, and the entire instrument has a footprint of less than 300 cm2. Activation of the light source, automated focusing of the sensor image, and digital cell counting are all initiated by the simple insertion of the sample holder into the instrument. The suspension is placed in a sample chamber in the form of a slide that is shaped to ensure proper orientation of the slide in the cell counter.
Abstract:
A differential interference contrast (DIC) determination device and method utilizes an illumination source, a layer having a pair of two apertures that receive illumination from the illumination source, and a photodetector to receive Young's interference from the illumination passing through the pair of two apertures. In addition, a surface wave assisted optofluidic microscope and method utilize an illumination source, a fluid channel having a layer with at least one aperture as a surface, and a photodetector that receives a signal based on the illumination passing through the aperture. The layer is corrugated (e.g., via fabrication) and parameters of the corrugation optimize the signal received on the photodetector.