Abstract:
The present invention relates to methods for reprogramming a somatic call to pluripotency by administering into the somatic cell at least one or a plurality of potency-determining factors. The invention also relates to pluripotent cell populations obtained using a reprogramming method.
Abstract:
The present invention relates to chemically defined and xenogeneic material-free methods for deriving endothelial cells from human pluripotent stem cells. In particular, the present invention provides highly efficient and reproducible methods of obtaining human endothelial cells from human pluripotent stem cells, where endothelial cells derived from the methods provided herein are suitable for clinically relevant therapeutic applications.
Abstract:
Methods of using a small molecule MYH11 agonist to inhibit intimal hyperplasia and to maintain a contractile phenotype in vitro and in vivo are described. Also described herein are methods for generating human contractile smooth muscle cells from human pluripotent stem cells under defined conditions in the presence of the small molecule MYH11 agonist.
Abstract:
The present invention relates to methods for reprogramming a somatic cell to pluripotency by administering into the somatic cell at least one or a plurality of potency-determining factors. The invention also relates to pluripotent cell populations obtained using a reprogramming method.
Abstract:
Fully defined media that support pluripotent cell viability, proliferation, cloning, and derivation, as well as methods and compositions including these media are described. Methods for deriving iPS cells from adult individuals under defined, xeno-free conditions are also described.
Abstract:
The present invention relates to three-dimensional (3D) tissue constructs and methods of using such 3D tissue constructs to screen for neurotoxic agents. In particular, provided herein are methods of producing and using complex, highly uniform human tissue models comprising physiologically relevant human cells, where the tissue models have the degree of sample uniformity and reproducibility required for use in quantitative high-throughput screening applications.
Abstract:
The present invention relates to methods for deriving human hematopoietic progenitors, primitive macrophages, and microglial cells from human pluripotent stem cells. In particular, provided herein are highly efficient and reproducible methods of obtaining human primitive macrophages and microglia from human pluripotent stem cells, where the primitive macrophages and microglia can be suitable for clinically relevant therapeutic applications.
Abstract:
Methods are provided that exploit thermostable FGF-1 proteins for support of human pluripotent stem cell cultures. Also provided are compositions containing thermostable FGF-1 for culturing of human pluripotent stem cells.