Abstract:
An optical film including a polymer including a repeating unit A including a repeating unit represented by the following Chemical Formulas 1 to 3, or a combination thereof; and a repeating unit B derived from a monomer having an unsaturated bond copolymerizable with the repeating unit A, wherein the optical film has a short wavelength dispersion of an in-plane phase-difference value (Re) (450 nm/550 nm) ranging from about 0.81 to about 1.20, and a long wavelength dispersion of an in-plane phase-difference value (Re) (650 nm/550 nm) ranging from about 0.90 to about 1.18: wherein, in Chemical Formulas 1 to 3, the variables R1 to R21 are defined herein.
Abstract:
An optical film includes a polarization film including a polyolefin and a dichroic dye, a first phase delay layer positioned on one side of the polarization film and including a liquid crystal, a second phase delay layer positioned on one side of the first phase delay layer and including a liquid crystal, a first adhesive between the polarization film and the first phase delay layer, and a second adhesive between the first phase delay layer and the second phase delay layer, wherein at least one of the first adhesive and the second adhesive has a room temperature storage modulus of greater than or equal to about 0.2 MPa at a frequency of 10 Hz, and a display device including the same, are provided.
Abstract:
Disclosed are an optical filter including a near infrared absorption layer on a polymer film. The polymer film has a* of about −5.0 to about +5.0 and b* of about −5.0 to about +5.0 in a color coordinate expressed by a CIE Lab color space. The near infrared absorption layer may be configured to transmit light in a visible region and to selectively absorb at least one part of light in a near infrared region. The near infrared absorption layer includes a first near infrared absorption material including a copper phosphate ester compound and a second near infrared absorption material including at least two different organic dyes. The second near infrared absorption material has a maximum absorption wavelength (λmax) in a wavelength region of about 650 nm to about 1200 nm. An electronic device may include the optical filter.
Abstract:
Disclosed are a near-infrared absorbing composition, an optical structure, and a camera module and an electronic device including the same. The near-infrared absorbing composition includes a copper complex represented by Chemical Formula 1. Definitions of Chemical Formula 1 are the same as described in the detailed description.
Abstract:
An optical filter includes a polymer film and a near infrared absorbing layer on the polymer film, where the near infrared absorbing layer transmits light in a visible wavelength region and selectively absorbs at least a part of light in a near infrared wavelength region. An average light transmittance of the optical filter in a wavelength region of about 700 nanometers (nm) to about 740 nm is less than about 7%.
Abstract:
Disclosed are a near-infrared absorbing film including a polymer film, a first near-infrared absorbing layer and a second near-infrared absorbing layer on the polymer film. The first near-infrared absorbing layer may be configured to transmit light in a visible region and to selectively absorb at least one part of light in a near-infrared region. The second near-infrared absorbing layer may be disposed on a surface of the first near-infrared absorbing layer. The first near-infrared absorbing layer may include a dye represented by Chemical Formula 1. The second near-infrared absorbing layer may include a copper complex compound. An optical filter may include the near-infrared absorbing film. An electronic device may include the optical filter. In Chemical Formula 1, R1 to R12 are described in the detailed description.
Abstract:
A compensation film includes a first retardation layer comprising a polymer having negative birefringence, and a second retardation layer comprising a polymer having negative birefringence, where the first retardation layer has an in-plane retardation (Re1) in a range of about 180 nanometers to about 300 nanometers for incident light having a wavelength of about 550 nanometers, the second retardation layer has an in-plane retardation (Re2) in a range of about 60 nanometers to about 170 nanometers for the incident light having the wavelength of about 550 nanometers, and the entire in-plane retardation (Re0) of the first retardation layer and the second retardation layer for incident light having wavelengths of about 450 nanometers and about 550 nanometers satisfies the following inequation: Re0 (450 nm)
Abstract:
An anti-reflective film includes a polarizing film and a compensation film, where the polarizing film includes a polymer, and a plurality of dichroic dyes having an absorption wavelength region in a range from about 380 nanometers to about 780 nanometers, and a reflective color of the anti-reflective film is substantially in a range of −5≦a*≦5 and −5≦b*≦5 in CIE-Lab color coordinates.
Abstract translation:抗反射膜包括偏振膜和补偿膜,其中偏振膜包括聚合物,并且多个二色性染料的吸收波长范围为约380纳米至约780纳米,反射色为 在CIE-Lab色坐标下,抗反射膜基本上在-5< 1lE; a *≦̸ 5和-5≦̸ b *≦̸ 5的范围内。
Abstract:
An optical film including a polymer including a repeating unit A including a repeating unit represented by the following Chemical Formulas 1 to 3, or a combination thereof; and a repeating unit B derived from a monomer having an unsaturated bond copolymerizable with the repeating unit A, wherein the optical film has a short wavelength dispersion of an in-plane phase-difference value (Re) (450 nm/550 nm) ranging from about 0.81 to about 1.20, and a long wavelength dispersion of an in-plane phase-difference value (Re) (650 nm/550 nm) ranging from about 0.90 to about 1.18: wherein, in Chemical Formulas 1 to 3, the variables R1 to R21 are defined herein.
Abstract:
Disclosed are a polarizing film including a polyolefin and a dichroic dye having a solubility parameter difference between the polyolefin and the dichroic dye is less than 7.4, and a display device including the polarizing film.