Abstract:
A diplexer, for coupling a first radio frequency (RF) signal corresponding to a first carrier frequency and a second RF signal corresponding to a second carrier frequency is disclosed. The diplexer includes a first port arranged to couple the first RF signal; a second port arranged to couple the second RF signal; a third port capable of connecting an antenna; a first impedance unit coupled to the first port and the third port; and a second impedance unit coupled to the second port and the third port; wherein the first port, the second port and the third port are coupled to a direct current (DC) ground; wherein the first impedance unit is arranged to provide an first open-circuit impedance against the second RF signal, and the second impedance unit is arranged to provide a second open-circuit impedance against the first RF signal.
Abstract:
A control circuit of a power amplifier includes a peak detector, a first comparator, a first current source, a second comparator, a second current source and a bias circuit. The peak detector is arranged for detecting an amplitude of an input signal. The first comparator is arranged for comparing the amplitude of the input signal with a first threshold to generate a first comparing result. The first current source is arranged for generating a first current according to the first comparing result The second comparator is arranged for comparing the amplitude of the input signal with a second threshold to generate a second comparing result. The second current source is arranged for generating a second current according to the second comparing result. The bias circuit is arranged for generating a bias voltage according to the first current and the second current to the power amplifier.
Abstract:
A compensation circuit of a power amplifier includes a varactor, a voltage sensor and a control circuit. The varactor is coupled to an input terminal of the power amplifier. The voltage sensor is arranged for detecting an amplitude of an input signal of the power amplifier to generate a detecting result. The control circuit is coupled to the varactor and the voltage sensor, and is arranged for controlling a bias voltage of the varactor to adjust a capacitance of the varactor according to the detecting result.
Abstract:
A radio-frequency (RF) power amplifier includes a matching network comprising at least one matching network circuit corresponding to at least one symmetry node, at least one detector for detecting power of a detected signal at the symmetry node of the matching network, and generating at least on control signal according to the power of the detected signal, wherein the detected signal is an odd harmonic of an RF signal when the RF power amplifier operates in a differential mode or an even harmonic of the RF signal when the RF power amplifier operates in a common mode, and at least one adjusting circuit for adjusting the RF signal according to the at least one control signal.
Abstract:
A semiconductor integrated circuit includes an inductor and a plurality of high permeability patterns. The inductor includes one conductive loop. The high permeability patterns are disposed adjacent to the conductive loop.
Abstract:
A semiconductor integrated circuit includes an inductor and a plurality of high permeability patterns. The inductor includes one conductive loop. The high permeability patterns are disposed adjacent to the conductive loop.
Abstract:
A method for controlling an electrical property of a passive device during a fabrication of an integrated component includes providing a substrate, manufacturing the passive device on the substrate, measuring the electrical property of the passive device to obtain a measuring result, determining at least one layout pattern corresponding to at least one later manufacturing process by the measuring result for adjusting the electrical property of the passive device, and continuing the rest of the fabrication including the at least one later manufacturing process of the integrated component.
Abstract:
A frequency divider includes a plurality of logic circuit blocks. Each of the logic circuit blocks has a plurality of control terminals. At least one of the control terminals of one of the logic circuit blocks is arranged to receive an input clock signal having a first duty cycle. At least one of the remaining control terminals of the one of the logic circuit blocks is arranged to couple another one of the logic circuit blocks by a positive feedback. A clock signal at the at least one of the remaining control terminals has a second duty cycle different from the first duty cycle. Each of the logic circuit blocks includes a plurality of first transistors coupled in parallel between a first reference voltage and an output terminal, and a plurality of second transistors coupled in series between a second reference voltage and the output terminal.
Abstract:
A harmonic-rejection mixer apparatus includes a mixing circuit and a combining circuit. The mixing circuit receives mixes an input signal and a first local oscillator (LO) signal to generate a first output signal, and mixes the same input signal and a second LO signal to generate a second output signal, wherein the first LO signal and the second LO signal have a same frequency but different phases. The combining circuit combines the first output signal and the second output signal, wherein harmonic rejection is at least achieved by combination of the first output signal and the second output signal.
Abstract:
A power combiner includes a planar figure-8 shaped primary winding and a planar figure-8 shaped secondary winding; wherein, the planar figure-8 shaped primary winding is substantially overlaid with the planar figure-8 shaped secondary winding. In addition, there is provided a radio frequency (RF) transmitter having a power combiner, where the power combiner includes a planar figure-8 shaped primary winding and a planar figure-8 shaped secondary winding, wherein the planar figure-8 shaped primary winding is substantially overlaid with the planar figure-8 shaped secondary winding.