Abstract:
Methods and systems for positioning a specimen and characterizing an x-ray beam incident onto the specimen in a Transmission, Small-Angle X-ray Scatterometry (T-SAXS) metrology system are described herein. A specimen positioning system locates a wafer vertically and actively positions the wafer in six degrees of freedom with respect to the x-ray illumination beam without attenuating the transmitted radiation. In some embodiments, a cylindrically shaped occlusion element is scanned across the illumination beam while the detected intensity of the transmitted flux is measured to precisely locate the beam center. In some other embodiments, a periodic calibration target is employed to precisely locate the beam center. The periodic calibration target includes one or more spatially defined zones having different periodic structures that diffract X-ray illumination light into distinct, measurable diffraction patterns.
Abstract:
Methods and systems for more efficient X-Ray scatterometry measurements of on-device structures are presented herein. X-Ray scatterometry measurements of one or more structures over a measurement area includes a decomposition of the one or more structures into a plurality of sub-structures, a decomposition of the measurement area into a plurality of sub-areas, or both. The decomposed structures, measurement areas, or both, are independently simulated. The scattering contributions of each of the independently simulated decomposed structures are combined to simulate the actual scattering of the measured structures within the measurement area. In a further aspect, measured intensities and modelled intensities including one or more incidental structures are employed to perform measurement of structures of interest. In other further aspects, measurement decomposition is employed to train a measurement model and to optimize a measurement recipe for a particular measurement application.
Abstract:
Multilayer targets enabling fast and accurate, absolute calibration and alignment of X-ray based measurement systems are described herein. The multilayer calibration targets have very high diffraction efficiency and are manufactured using fast, low cost production techniques. Each target includes a multilayer structure built up with pairs of X-ray transparent and X-ray absorbing materials. The layers of the multilayer target structure is oriented parallel to an incident X-ray beam. Measured diffraction patterns indicate misalignment in position and orientation between the incident X-Ray beam and the multilayer target. In another aspect, a composite multilayer target includes at least two multilayer structures arranged adjacent one another along a direction aligned with the incident X-ray beam, adjacent one another along a direction perpendicular to the incident X-ray beam, or a combination thereof. In some embodiments, the multilayer structures are spatially separated from one another by a gap distance.
Abstract:
Methods and systems for evaluating the geometric characteristics of patterned structures are presented. More specifically, geometric structures generated by one or multiple patterning processes are measured by two or more metrology systems in accordance with a hybrid metrology methodology. A measurement result from one metrology system is communicated to at least one other metrology systems to increase the measurement performance of the receiving system. Similarly, a measurement result from the receiving metrology system is communicated back to the sending metrology system to increase the measurement performance of the sending system. In this manner, measurement results obtained from each metrology system are improved based on measurement results received from other cooperating metrology systems. In some examples, metrology capability is expanded to measure parameters of interest that were previously unmeasurable by each metrology system operating independently. In other examples, measurement sensitivity is improved and parameter correlation is reduced.
Abstract:
Methods and systems for generating measurement models of nanowire based semiconductor structures based on re-useable, parametric models are presented herein. Metrology systems employing these models are configured to measure structural and material characteristics (e.g., material composition, dimensional characteristics of structures and films, etc.) associated with nanowire semiconductor fabrication processes. The re-useable, parametric models of nanowire based semiconductor structures enable measurement model generation that is substantially simpler, less error prone, and more accurate. As a result, time to useful measurement results is significantly reduced, particularly when modelling complex, nanowire based structures. The re-useable, parametric models of nanowire based semiconductor structures are useful for generating measurement models for both optical metrology and x-ray metrology, including soft x-ray metrology and hard x-ray metrology.
Abstract:
Methods and systems for creating a measurement model based only on measured training data are presented. The trained measurement model is then used to calculate overlay values directly from measured scatterometry data. The measurement models receive scatterometry signals directly as input and provide overlay values as output. In some embodiments, overlay error is determined from measurements of design rule structures. In some other embodiments, overlay error is determined from measurements of specialized target structures. In a further aspect, the measurement model is trained and employed to measure additional parameters of interest, in addition to overlay, based on the same or different metrology targets. In some embodiments, measurement data from multiple targets, measurement data collected by multiple metrologies, or both, is used for model building, training, and measurement. In some embodiments, an optimization algorithm automates the measurement model building and training process.
Abstract:
A parameterized geometric model of a structure can be determined based on spectra from a wafer metrology tool. The structure can have geometry-induced anisotropic effects. Dispersion parameters of the structure can be determined from the parameterized geometric model. This can enable metrology techniques to measure nanostructures that have geometries and relative positions with surrounding structures that induce non-negligible anisotropic effects. These techniques can be used to characterize process steps involving metal and semiconductor targets in semiconductor manufacturing of, for example, FinFETs or and gate-all-around field-effect transistors.
Abstract:
A spectroscopic metrology system includes a spectroscopic metrology tool and a controller. The controller generates a model of a multilayer grating including two or more layers, the model including geometric parameters indicative of a geometry of a test layer of the multilayer grating and dispersion parameters indicative of a dispersion of the test layer. The controller further receives a spectroscopic signal of a fabricated multilayer grating corresponding to the modeled multilayer grating from the spectroscopic metrology tool. The controller further determines values of the one or more parameters of the modeled multilayer grating providing a simulated spectroscopic signal corresponding to the measured spectroscopic signal within a selected tolerance. The controller further predicts a bandgap of the test layer of the fabricated multilayer grating based on the determined values of the one or more parameters of the test layer of the fabricated structure.
Abstract:
Methods and systems for performing measurements of semiconductor structures based on high-brightness, polychromatic, reflective small angle x-ray scatterometry (RSAXS) metrology are presented herein. RSAXS measurements are performed over a range of wavelengths, angles of incidence, and azimuth angles with small illumination beam spot size, simultaneously or sequentially. In some embodiments, RSAXS measurements are performed with x-ray radiation in the soft x-ray (SXR) region at grazing angles of incidence in the range of 5-20 degrees. In some embodiments, the x-ray illumination source size is 10 micrometers or less, and focusing optics project the source area onto a wafer with a demagnification factor of 0.2 or less, enabling an incident x-ray illumination spot size of less than two micrometers. In another aspect, active focusing optics project programmed ranges of illumination wavelengths, angles of incidence, and azimuth angles, or any combination thereof, onto a metrology area, either simultaneously or sequentially.
Abstract:
Methods and systems for creating a measurement model based only on measured training data are presented. The trained measurement model is then used to calculate overlay values directly from measured scatterometry data. The measurement models receive scatterometry signals directly as input and provide overlay values as output. In some embodiments, overlay error is determined from measurements of design rule structures. In some other embodiments, overlay error is determined from measurements of specialized target structures. In a further aspect, the measurement model is trained and employed to measure additional parameters of interest, in addition to overlay, based on the same or different metrology targets. In some embodiments, measurement data from multiple targets, measurement data collected by multiple metrologies, or both, is used for model building, training, and measurement. In some embodiments, an optimization algorithm automates the measurement model building and training process.